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I come here as an amateur

knowing the exponential function,  
multiplication, eigenvalues, 
and having the ability to read

— and being interested!



Newton’s first law of motion

Slide 1: Newton

‘A body continues in its state of rest, or in uniform 

motion in a straight line, unless acted upon by a force.’ 
Philosophiæ Naturalis Principia Mathematica, 1687

The Hardy–Weinberg principle is the 
evolutionary genetics equivalent of this law.



The basics and background
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Human cells have 23 
chromosome pairs
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The 23rd pair differs 
between men and women

X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X

Sex cells have 23 
single chromosomes

X X X X X  
X X X X X  
X X X X X  
X X X X X  
  X/Y X X

Each male sex cell has 
either an X or Y 23rd 
chromosome

23 pairs are formed out of these 2 x 23 single chromosomes. So the last two chromosomes 
are inherited with an X from the mother, and either an X or a Y from the father. 
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But we didn’t know this a hundred years ago
In fact, it was believed we had 48 chromosomes until 1956! (first suggested at all around 1880)

So what did people think? Blending inheritance
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taller and thinner +
1
2

shorter and rounder = average

Only some of the heritage realised 
as traits. Additional part passed on.

This had been largely recognised for centuries by breeders, and even though Mendel 
performed his bean experiments in the 1850s and 1860s (29 000 Pisum Sativum!) his work 
was unrecognised until rediscovered around 1900. And then debated for at least 30 years!
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Galton’s law of ancestral heredity
How do the variations in a 
persons traits depend upon 
the variations of the same traits 
in generation n before him?

Galton had many different arguments, but put very roughly they were 
combinations of (i) empirical data, and (ii) mathematical induction.

Galton, Natural Inheritance, 1889.

q
Generation  inherits  of the traits of Generation . N0 q ∈ (0,1) N1

q

1 − q

= q + q[q + q[q + (1 − q)]] = …

1 = q + (1 − q) = q + q[q + (1 − q)]
ancestral part ancestral part

all of grandfather’s latent and patent traits
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The debate

x0 = q1x1 + q2x2 + q3x3 + …

Simply put, the biometricians tried to solve a multiple regression problem for the 
different generations by finding a common , whereas the mendelians choose  
and all other 

q q1 = 1
qj = 0.

Yule, 1902

Yule argued that dominant traits would contribute more than recessive over time, 
and that Mendel’s findings were special cases of the law of ancestral heredity.



Heredity versus equilibrium

Punnett

Hardy

Pearson had recognised that ,  for the frequencies of 
dominant and recessive genes was an equilibrium, so 
that the frequencies would remain stable in that case. 
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Pearson

Yule

Enters Hardy, 1908:
’To the Editor of Science: I am reluctant to intrude in a discussion concerning matters of which I 
have no expert knowledge, and I should have expected the very simple point which I wish to 
make to have been familiar to biologists. However, some remarks of Mr Udny Yule, to which Mr 
R C Punnett has called my attention, suggest that it may still be worth making.’

And establishes the Hardy–Weinberg equilibrium

(p + q)2 : 2(p + q)(q + r) : (q + r)2



Hardy’s argument

So when AA mates Aa, there is a 100% chance of picking A from 
the mother, say, and 50% of picking A (or a) from the father.

Assume that a gene has two alleles: A (dominant) and a (recessive).  
Then there are the genotypes AA, Aa and aa.

A a
A AA Aa
a aA aa

Punnett square for 
two single alleles 
forming a genotype

In next generation, the frequencies are therefore: 

AA:   p2 + 2 1
2 p(2q) + ( 1

2 )
2
(2q)2 = p2 + 2pq + q2 = (p + q)2

AA-AA AA-Aa Aa-Aa

aa:   ( 1
2 )

2
(2q)2 + 2

1
2

(2q)r + r2 = q2 + 2qr + r2 = (q + r)2

Aa-Aa Aa-aa aa-aa

Say that in a population the frequencies of genotypes are 
AA: ,     Aa: ,      and  aa: ,      where .p 2q r p + 2q + r = 1

AA Aa
AA
Aa qp
Frequencies when AA 
and Aa mate to AA

p2 pq
q2

= 2(q + p)(q + r)

Aa:  2 1
2 p(2q) + 2 ( 1

2 )
2
(2q)2 + 2pr + 2 1

2 (2q)r = 2pq + 2q2 + 2pr + 2qr
AA-Aa Aa-Aa AA-aa Aa-aa

And a check shows 
that these frequencies 
sum up to unity!



But that’s not the argument
‘The interesting question is — in what circumstances will this distribution be the 
same as that in the generation before?’ Hardy 1908 

p = (p + q)2 2q = 2(q + p)(q + r) r = (q + r)2

2q = 2q2 + 2q(r + p) + 2pr
= 2q2 + 2q(1 − 2q) + 2pr = 2q − 2q2 + 2pr = 2q

r = q2 + 2rq + r2 = q2 + r(2q + r) = q2 + r(1 − p) = r

First eq. using :p + 2q + r = 1

p = p2 + 2pq + q2 = p(p + 2q) + q2 = p(1 − r) + q2

⟺ pr = q2

First eq. using  and :p + 2q + r = 1 pr = q2

Third eq. using  and :p + 2q + r = 1 pr = q2

Notice that  is fulfilled for example 
for Pearsons case (all frequencies ). 

pr = q2

1
2



But that’s not the argument
‘The interesting question is — in what circumstances will this distribution be the 
same as that in the generation before?’ Hardy 1908 

p = (p + q)2 2q = 2(q + p)(q + r) r = (q + r)2

But  will always be the case after one generation, as q̃2 = p̃r̃

p̃ = (p + q)2 q̃2 = (q + p)2(q + r)2 r̃ = (q + r)2

are new the frequencies of the genotypes! 

This proves the Hardy–Weinberg equilibrium

(p + q)2 : 2(p + q)(q + r) : (q + r)2

among frequency distributions of the allele pairs AA, Aa and aa, 
for any frequencies  and .p, q r



Assumptions and consequences

Just as in Newton’s first law of motion, the assumptions are that there are no 
exterior forces acting on the population, and that the mating is random process in a 
population large enough to sustain the probabilities. These are often listed as:

• Infinite population 
• random mating 
• no natural selection  

(selection would typically favour one genotype over another, and can only decrease genotypes). 
• no gene flow or mutations  

(gene flow and mutations would typically increase variance and add genotypes)

The Hardy–Weinberg equilibrium is stable enough to serve as base line for 
population stratification.
• Given traits in the population one can infer  (but not  directly!) and therefrom 

calculate  and  using the equilibrium.   
• When the mixed genotype Aa is visible as a trait (say grey birds), it is possible to test 

using Pearson’s(!) -test if the population is within Hardy–Weinberg equilibrium.

q p
p r

χ2

χ2 = ∑
j

(Oj − Ej)2

Ej

Goodness of fit for (3 genotypes – 2 alleles) 
degree of freedom and chosen significance 
level of the probability distribution given by 
the density function

1

2 k
2Γ( k

2 )
x

k
2 −1e− x
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So what happens when the gene affects sex cells?
Although not considered by Hardy, consider a gene on the 23rd X chromosome (with no 
match on the Y chromosome) still with the two alleles A (dominant) and a (recessive). 

Now we count only total frequencies of the alleles A and a in the female and male 
population, say , .pf + qf = 1 pm + qm = 1

The female genotypes are as before AA, Aa and aa.
But the male genotypes are only AY and aY.

Pf(AA) = pf pm

Pf(Aa) = pf qm + qf pm = pf(1 − pm) + (1 − pf )pm

Pf(aa) = qf qm = (1 − pf )(1 − pm)

Pm(AY ) = pf

Pm(aY ) = 1 − pf

AA Aa aa

AY AA AA or Aa Aa

aY Aa Aa or aa aa

Punnett square for female offspring

XX AA Aa aa

AY AY AY or aY aY

aY AY AY or aY aY

Punnett square for male offspring

YX



So what happens when the gene affects sex cells?

Pf(AA) = pf pm

Pf(Aa) = pf qm + qf pm = pf(1 − pm) + (1 − pf )pm

Pf(aa) = qf qm = (1 − pf )(1 − pm)

Pm(AY ) = pf

Pm(aY ) = 1 − pf

This gives the following frequencies in the next generation (note that  always here):q = 1 − p

pf(t + 1) = pf pm +
pf − pmpf + pm − pmpf

2
=

pf(t) + pm(t)
2

pm(t + 1) = pf(t)

This is in fact both harder mathematically than the previous case, and more interesting, as we 
have a second-order recurrence relation for   (note that  is always chasing ):pf pm pf

xn+2 =
xn+1 + xn

2
x1 = 1

2 (pf (0) + pm(0)), x(0) = pf (0)



recurrence relations…
First note a few things: xn+2 =

xn+1 + xn

2
If , then in the next generation,pf(t) > pm(t)

pf(t + 1) = 1
2 (pf(t) + pm(t)) < pf(t) = pm(t + 1)

If , then in the next generation,pf(t + 1) > pf(t)

pf(t + 2) = 1
2 (pf(t + 1) + pm(t + 1)) = 1

2 (pf(t + 1) + pf(t)) < pf(t + 1)

Oscillating between sexes

Oscillating in time

Increasing/decreasing in the subsequences  and {xn}n=2j {xn}n=2j+1

pf(t + 2) = 1
2 (pf(t + 1) + pf(t)) ≶ pf(t)

Always converges — but oscillating 
around the equilibrium! 
(and which equilibrium?)



recurrence relations…
Can be cast as a linear algebra problem:

[xn+2
xn+1] = [

1
2

1
2

1 0] [xn+1
xn ]

[yn+2
yn+1] = [λ1 0

0 λ2] [yn+1
yn ] = [λ1 0

0 λ2]
n

[y1
y0]

Using a change of variables based on eigenvectors/values of the matrix.

Eigenvalues: λ2 = 1
2 (λ + 1) ⟺ (λ − 1

4 )2 = 1 + 8
16 ⟺ λ = 1

4
± 3

4

So  with xn = c11n + c2 (− 1
2 )

n
x1 = 1

2 (pf(0) + pm(0)), x(0) = pf(0), and we get

xn = 2
3 pf(0) + 1

3 pm(0) + (pf(0) − pm(0)) (− 1
2 )

n
→ 2

3 pf(0) + 1
3 pm(0)

The same allele equilibrium 
for men and women yields 
equilibrium phenotypes of 
frequencies  and , 
respectively for men and 
women, in recessive traits.

qeq q2
eq

Northern Europe
~0.08 ~0.004

Note that here (most probably) the same  fraction as in Galton’s tables reappear.1
3

cf. Modern synthesis



The last slide, and the clock!
The Hardy–Weinberg equilibrium serves as a ’steady state’ to help determine 
divergence points in evolutionary genetics. The counter-acting mechanism, setting 
the rate of change in comparison to this steady state, is mutation rate.

1943,  the Delbrück–Luria experiment  
Nobel laureates Max Delbrück and Salvador Luria used bacteriophages to 
show that mutations are spontaneous (that is, prior to selection) and 
determined the mutation rate of E coli.

Used differential equations 
and Poisson distribution test 
(if mutations would have 
been a response to the 
e n v i ro n m e n t , s u r v i v o r s 
would have distr ibuted 
according to a Poisson 
distribution with mean equal 
variance).

f(x) =
λx

x!
e−λMutation rates

~  per base pair 
per generation

10−8

but higher in sex-specific DNA 
(Mitochondrial and Y-chromosomal)

~  10−11

slowest known 
Paramecium ciliate

?

fastest known

~  10−3



Thank you for your attention!


