DNTNU

Data Science: Industry Challenges and Expectations

Thiago G. Martins, PhD

Principal Data Scientist @ AIA Science Associate Professor II @ NTNU Trondheim, Oct. 2017

About me

- Started in Statistics before it was "sexy"
- Stat PhD from NTNU
- Previously Data Scientist at Yahoo!
- Now Principal Data Scientist at AIA Science
- Part-time Associate Professor at NTNU

Stat PhD @ NTNU

 $\pi(\theta|y) = \frac{\pi(\theta)f(y|\theta)}{\int \pi(\theta)f(y|\theta)d\theta}$

- Practical challenges
 - Prior specification
 - Computation of the normalizing constant
- Focus
 - How to properly design complex models
 - How to approximate their posteriors fast enough

Yahoo!

Yahoo is giving a critical piece of internal technology to the world -- just like it did with Hadoop

- Yahoo is open-sourcing an internal tool called Vespa, which it uses for content recommendations, ad serving, and executing certain searches.
- Vespa is arguably Yahoo's biggest open-source software release since Hadoop in 2009, which formed the basis for two now-public companies, Hortonworks and Cloudera.
- Companies like Amazon, Facebook, and Google could find it useful.

- Huge volumes of data
- Big Data technology
- Batch training
- Serving predictions requirements
- Integrating models with applications
- Scalability before model design

AIA Science

- In general, sub-optimal solutions used.
 - Scientific
 - \circ Engineering
- First employee in TRD.
- Data Valuable problems Solution that works in production.
- Many challenges ahead.
 - \circ Technical
 - Business model
- Lack of qualified professionals
 - Position @ NTNU

Basic CS Knowledge

- Broad spectrum of professionals (pure CS pure Stat)
- Diversity is extremely important. But this talk focus on Statisticians.
- Better code organization
 - Library/packages
 - Unit tests
 - Version control (git Github/Bitbucket)
- Priority to R and Python

- Exploration and visualization
- Hadley Wickham and Tidyverse
- Tidyverse: collection of R packages designed for data science
 - tidyr: organize data
 - dplyr: data manipulation (filter, select, summarise)
 - ggplot2: grammar of graphics
- RStudio
- R notebook

R resources

Python

- General-purpose programming language
 - Widely used in industry
- Most interesting open-source libraries have Python APIs
 - $\circ \quad \text{TensorFlow} \quad$
 - Spark
 - 0 +++
- Scientific Computing/Data Science with Python
 - Numpy (N-dimensional array, linear algebra, rng)
 - Pandas (data frame and data manipulation functionality)
 - Matplotlib (graphics)
- I use PyCharm as IDE
- Jupyter notebook

Python Resources

Data Storage, Data Exchange and APIs

- Databases
 - Relational databases
 - NoSQL
- Data Exchange
 - JSON
 - XML
 - 0 +++
- Webserver
- Application Programming Interface

Call to action

- What the students can do:
 - Self-educate (books + MOOCs)
 - Build re-usable libraries/packages instead of scripts.
 - Hobby projects
- How the university can help:
 - "R for Data Science" and "Python for Data Analysis" courses
 - Those skills are as important as any when in industry
 - More meaningful projects, with better evaluation
 - Correctness of the solution
 - Reproducible
 - Easy of use by third-parties
 - Properly tested

Big Data Boom

- MapReduce: Simplified Data Processing on Large Clusters (2004)
- Hadoop open sourced by Yahoo! in 2006
- Spark open-sourced in 2010

Big Data Ecosystem

- Development driven by the needs of the Tech Giants
- Open-sourced most of the interesting technologies
 - Engagement from the community (development, support)
 - New employees already familiar with their tools
 - Marketing
- Everything available for everyone. Software (open-source) + Hardware (cloud-providers)
- Overwhelming. Important to understand benefits and limitations.
- Extremely overused nowadays
- Simply scales what you have always been able to do in your laptop

Call to action

- Students
 - It is easy to install Hadoop and Spark in your laptop
 - Jobs written locally can easily scale to huge volumes of data
 - Try their Quick Start guides
- University
 - When solving problems/giving courses with R and Python, we should ask:
 - What if I had 10x, 100x, 1000x more data?
 - What if data were streaming with increasing speed, X rows per hour/minute/second?
- Our students need to understand the scalability of their solutions.

Deep Learning

Deep Learning Boom

- Big Data boom around 2010/2011
- Deep Learning boom around 2014/2015
- Both still strong.
- Huge success for text and image analysis
- Many deep learning frameworks
- TensorFlow by far the most popular

Тор	librari	es by Github stars
#1:	71627	tensorflow/tensorflow
#2:	20489	BVLC/caffe
#3:	20038	fchollet/keras
#4:	12558	Microsoft/CNTK
#5:	11369	dmlc/mxnet
#6:	7712	pytorch/pytorch
#7:	7332	torch/torch7
#8:	7297	deeplearning4j/deeplearning4j
#9:	6981	Theano/Theano
#10:	6767	tflearn/tflearn
#11:	5742	caffe2/caffe2
#12:	5544	baidu/paddle
#13:	5336	deepmind/sonnet
#14:	3242	Lasagne/Lasagne
#15:	3232	NervanaSystems/neon
#16:	2987	pfnet/chainer
#17:	2833	davisking/dlib
#18:	2525	NVIDIA/DIGITS
#19:	1775	clab/dynet

Just complex models

• There is nothing inherently special about Deep Learning models

$$f(y|\theta) = \mathcal{N}(h_{\theta}(x), \sigma^2)$$

- Typical estimation setup: Variations of SGD
 - Forward propagation: Given x, compute h
 - Backward propagation: Efficient way to compute the gradient of the loss
- Many popular classes of models (each with many variations)
 - Convolutional Neural Networks (CNNs)
 - Recurrent Neural Networks (RNNs)
 - Generative Adversarial Networks (GANs)

- TensorFlow is an open source software library for numerical computation using data flow graphs.
 - Nodes in the graph represent mathematical operations,
 - Graph edges represent the multidimensional data arrays (tensors)
- Anything that can be represented as a data flow graph can be computed using TensorFlow.
- Provides a Python API
- Relatively easy to use, after understand its "data flow graphs" philosophy

TensorFlow

```
import tensorflow as tf
```

```
# Model parameters
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-.3], dtype=tf.float32)
# Model input and output
x = tf.placeholder(tf.float32)
linear_model = W * x + b
y = tf.placeholder(tf.float32)
```

loss

```
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
# optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
```


TensorFlow

```
# training data
x_{train} = [1, 2, 3, 4]
y_{train} = [0, -1, -2, -3]
# training loop
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):
  sess.run(train, {x: x_train, y: y_train})
```


Call to action

- Deep Learning models are popular and they are not going anywhere
- Students:
 - Free MOOCs
 - Deep Learning @ Coursera
 - Deep Learning @ Udacity
- University:
 - Include Neural Network/Deep Learning models into existing classes
 - Introduction to Statistical Learning
 - Full semester dedicated course to Deep Learning (Theory and Practice)
 - Very active research area
 - Attract funding and researchers

Statisticians

Statisticians and Statistics

- Hard to find in industry
 - Lack of basic CS skills is a blocker
 - It is a hard job. Not easy to follow a recipe.
- Hard for **me** to define what makes a good statistician
 - People ask me, what should I do/read to do what you do?
 - Not easy question in my opinion.
- Analyse every problem/solution I see using core stat knowledge
 - Probability, Statistical Inference, Bayesian/Classical Statistics, etc.
 - Everything is connected.
 - Simpler to judge advantages and disadvantages of different methodology.
- ML and Stat look at problems a bit differently

Case I: Uncertainty misconceptions

- Classification tasks are very popular in ML
- Given a set of covariates x, classify y as either being 0 or 1
- As a statistician, I look at this problem as a regression.
 - Predict the probability that y = 1
- But a popular ML book considers p(y=1) to be a measure of uncertainty of your classification.
- p(y=1) is a point estimate, not an uncertainty measure

Case II: GBDT

Case II: GBDT

Call to Action

- I am continuously learning how to be a better Applied Statistician
- I am now leading a team of young Data Scientists at AIA
- Main learning lesson so far:
 - We need to explain every decision we made
 - Justify what we are going to do next before doing it
- Enough with demos, we need to solve valuable problems.
 - Why not start with problems affecting the university??

Thank you!

Thiago Guerrera Martins, PhD Principal Data Scientist, AIA Science

A better future through the use of Artificial Intelligence, Analytics and Machine Learning

