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Abstract

It follows from the Mean Value Principle that the level set of a harmonic function cannot
contain closed curves. Closed curves can be achieved by adding small arcs. Here it was
found that the length of such arcs seems to decrease exponentially for the real part of
complex polynomials as the degree increases.

1. Introduction

Harmonic functions are of special interest in both pure and applied mathematics.
An interesting property of such (non-trivial) functions is that their level sets never form
closed curves. However, by adding a small arc a closed curve can be achieved as illustrated
in Figure 1. Such geometrical properties were recently investigated by Enciso and Peralta-
Salas [1]. The exact nature of such nearly-closed curves is not known. This paper
examines the behaviour of the level sets of the real part of complex polynomials.

Figure 1: The level set of a harmonic function can approach a closed curve where just a small
arc is missing. Figure from Enciso and Peralta-Salas [1].

First, some general theory of harmonic functions will be revisited. Then the problem
to be studied is more precisely defined.

1.1. Harmonic functions
Definition 1.1. A real-valued function u is said to be harmonic on the open, non-empty
Ω ⊆ Rn if u is two times continuously differentiable on Ω and u fulfils Laplace’s equation,
∇2u = 0, where ∇2 is the well-known Laplacian operator [2].
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An important property of harmonic functions is the mean-value property, stating that
if u is harmonic on the closure of a ball of radius r centred at a, then u(a) is equal to
its own average over the open ball of radius r and centred at a. This is summarised in
Theorem 1.1.

Theorem 1.1. If u is harmonic on the closure B̄(a, r) = {x ∈ Rn||x−a| ≤ r} of a ball,
B, then the value of u(a) equals the average of u over the boundary of B, ∂B,

u(a) =
∫
∂B

dσ(δ)u(a+ rδ).

Proof. As we are only interested in the complex plane, we will restrict ourselves to n = 2.
The general proof is stated by eg. Axler et al. [2].

Without loss of generality we consider the unit circle B(0, 1). Choose η = log |x| =
log
√
x2 + y2. η diverges at the origin, so consider the exclusion of a small circle Bε =

B(0, ε). Green’s identity states that

0 =
∫
B\Bε

[u∇2η − η∇2u] dV =
∫
∂B

[uDnη − ηDnu] dS −
∫
∂Bε

[uDnη − ηDnu] dS ,

where

Dnη = n̂ · ∇η = [x, y]√
x2 + y2

· [x, y]
x2 + y2 =

{
1, [x, y] ∈ ∂B,
1/ε, [x, y] ∈ ∂Bε,

η(x) =
{

0, x ∈ ∂B,
log |ε|, x ∈ ∂Bε.

From the integral above, it follows that∫
∂B

[uDnη − ηDnu] dS =
∫
∂Bε

[uDnη − ηDnu] dS

which simplifies to ∫
∂B

udS =
∫
∂Bε

[
u

ε
− log |ε| ·Dnu

]
dS .

In the limit ε → 0, ∂Bε has a circumference of 2πε and is approaching the origin so
that u(x)→ u(0), x ∈ ∂Bε. The right hand side integrals become

lim
ε→0

∫
∂Bε

u

ε
dS = 2πu(0),

and
lim
ε→0

∫
∂Bε

log |ε| ·DnudS = 0

as Dnu is bounded and limε→0 ε log |ε| = 0. Hence,

u(0) =
∫
∂B

u
dS
2π .

2



A result of this property, is that the level set, as defined in Definition 1.2, of a
harmonic function cannot contain closed curves.

Definition 1.2. A level set of a function f is the set S = {s|f(s) = c} for some fixed
value c.

Theorem 1.2. If f : C→ C is an analytic function, then it satisfy the Cauchy-Riemann
equations,

∂u

∂x
= ∂v

∂y
,

∂v

∂x
= −∂u

∂y
. (1)

Proof. The proof is following the ideas of Kreyszig [3]. If f : C → C is an analytic
function, then there exists a derivative df

dz at each point z, by definition

df
dz = lim

∆z→0

f(z + ∆z)− f(z)
∆z . (2)

Write z = x + iy and ∆z = ∆x + i∆y. Split f into its real and imaginary parts
f(z) = u(z) + iv(z). The limit in (2) can then be expressed as to terms, one for u and
one for v,

df
dz = lim

∆z→0

u(z + ∆z)− u(z)
∆z + i lim

∆z→0

v(z + ∆z)− v(z)
∆z . (3)

Also, the limit can be evaluated in two ways, either by first setting ∆y = 0 and then
evaluating the limit ∆x→ 0, or vice versa.

In the first case, ∆y = 0 implies ∆z = ∆x. By writing u and v as functions of (x, y),
the limits in (3) are recognised as partial derivatives with resect to x,

df
dz = lim

∆x→0

u(x+ ∆x, y)− u(x, y)
∆x + i lim

∆x→0

v(x+ ∆x, y)− v(x, y)
∆x = ∂u

∂x
+ i

∂v

∂x
. (4)

The second case where ∆x = 0 so that ∆z = i∆y is analogue to (4), but with respect
to y,

df
dz = lim

∆y→0

u(x, y + ∆y)− u(x, y)
i∆y + i lim

∆y→0

v(x, y + ∆y)− v(x, y)
i∆y = −i∂u

∂y
+ ∂v

∂y
. (5)

Equating (4) and (5),
∂u

∂x
+ i

∂v

∂x
= ∂v

∂y
− i∂u

∂y
,

yields two equations, one for the real part and one for the imaginary part,

∂u

∂x
= ∂v

∂y
,

∂v

∂x
= −∂u

∂y
,

which are the Cauchy-Riemann equations.

The reverse of Theorem 1.2 can also be shown [3]. In this paper, the real part of
complex polynomials is being studied. It is therefore useful to establish that such a
function is harmonic, as in Corollary 1.2.1.
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Corollary 1.2.1. If f : C→ C is an analytic function, then the real part u = Re{f} is
harmonic.

Proof. By Theorem 1.2, u = Re{f} satisfy the Cauchy-Riemann equations. These can
be combined by differentiating the first equation with respect to x and substitute in the
second equation,

∂u
∂x = ∂v

∂y

∂v
∂x = −∂u∂y

}
∂2u

∂x2 = −∂
2u

∂y2 →
∂2u

∂x2 + ∂2u

∂y2 = ∇2u = 0.

1.2. Problem
As mentioned earlier, the problem to be studied is how close to a closed curve the

level set of a harmonic function can come, or how small an arc has to be added to make
a closed curve. In this paper, the real part of complex polynomials, and its Cesàro
summations, is investigated.

The real part qn(z) of a complex polynomial Pn(z) of degree n is

qn(z) = Re{Pn(z)} = Re


n∑
j=0

ajz
j

, aj ∈ R, z ∈ C. (6)

Since polynomials are analytic functions, it follows from Corollary 1.2.1 that qn is a
harmonic function.

The effect of Cesàro summation is also investigated. Introduce therefore the notation

qmn = 1
n+ 1

n∑
j=0

qm−1
j , m ≥ 1 (7)

and let q0
n be qn defined in (6).

Two sets of coefficients were studied, namely

aj =
{

0, j = 0
1, j ≥ 1

(8)

and
aj = j

n
, j ≥ 0 (9)

where n is the degree of the polynomial. The level sets were found for qmn = c.
By choosing the first set of coefficients and restricting the problem to the unit circle,

qn(z) takes the form,

qn(z) = Re


n∑
j=1

cos jθ + i sin jθ

 =
n∑
j=1

cos jθ = Dn(θ)− 1
2 ,
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where θ is the complex argument of z and Dn(θ) the Dirichlet kernel,

Dn(θ) =
n∑

k=−n
eikθ = 1 + 2

n∑
k=1

cos(kθ).

Thus, there is a close relationship between the polynomial in question and the Dirichlet
kernel, from which it follows that q1

m is similar to the Fejér kernel,

Fn(x) = 1
n+ 1

n∑
k=0

Dk(x) = 1
n+ 1

n∑
k=0

(1 + 2qk).

However, this project will restrict itself to the study of qmn .

2. Method

The polynomials qmn were calculated for a grid zj = xj + iyj with xj ranging from
xmin to xmax, and yj from ymin to ymax, with a distance |xj+1 − xj | = |yj+1 − yj | = dz.

An algorithm was implemented in Matlab using the recursive relations

q0
0 = a0, (10)

q0
n+1 = Re{Pn+1} = q0

n + Re
{
an+1z

n+1} = q0
n + Re{an+1z}Re{zn}, n ≥ 0, (11)

and similarly

qmn+1 = 1
n+ 2

n+1∑
j=0

qm−1
j = 1

n+ 2

( n∑
j=0

qm−1
j + qm−1

n+1

)
= n+ 1
n+ 2q

m−1
n + 1

n+ 2q
m−1
n+1 , m ≥ 1, n ≥ 0. (12)

The code used is given in Appendix A.
Contour plots were made to visually examine the level sets. m and c were chosen

to optimise visual appearance and kept fixed for increasing n. The gap size for the
inner curve was found using Matlabs ’Data Cursor’ and plotted against n. As the
resulting data looked exponential, the data were fitted to an exponential model of the
form g = aebn where g is gap size for fixed x = 1, and a and b parameters to be found.
Adjusted R2s were calculated for the models to assess their goodness-of-fit.
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3. Results

3.1. First set of coefficients
Contour plots for polynomials with coefficients of the form

aj =
{

0, j = 0
1, j ≥ 1

(8 revisited)

are shown in Figures 2 and 3.

(a) Fixed degree of polynomial n = 1000. (b) Fixed degree of polynomial n = 4000.

Figure 2: Level sets for a polynomial of form (8) with fixed number of averaging m = 2. Note
that different cs are used in the two plots.
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(a) Fixed number of averages m = 2.
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(b) Fixed degree of polynomial n = 4000.

Figure 3: Level sets for a polynomial of form (8) with c = 80 with varying degree of polynomial
n and number of averaging m.
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3.2. Second set of coefficients
Contour plots for polynomials with coefficients of the form

aj = j

n
, j ≥ 0 (9 revisited)

for c = −0.000248 are shown in Figure 4 for varying ms and in Figure 5 for varying n. c
were chosen to maximise the inner curves and still keep them close to closed. Level sets
for different cs are shown in Figure 6.

(a) (b)

Figure 4: Level sets for a polynomial of form (9) for N = 1000, c = −0.000248, and varying
number of averaging m.

(a) (b)

Figure 5: Level sets for a polynomial of form (9) for m = 2, c = −0.000248, and varying
degree of the polynomial n.
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(a) (b)

Figure 6: Level sets for a polynomial of form (9) for m = 2, n = 1000 and varying c.

3.3. Exponential model
The inner gap distance was measured for the conditions shown in Figures 8 and 5b.

The results were fitted to an exponential model as described in the Method section.
For the first set, a was found to be 0.02128 (95% CI: [0.01856, 0.02399]) and b to be
-0.0008331 (95% CI: [-0.0009774, -0.0006888]). For the second set, a was found to be
0.06044 (95% CI: [-0.03058, 0.1515]) and b to be -0.003694 (95% CI: [-0.01361, 0.00622]).
Adjusted R2 for the models were R2 = 0.9956 and R2 = 0.9776 respectively.
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(a) For the first set of coefficients
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(b) For the second set of coefficients

Figure 7: Missing arc length (gap size g) shown for increasing polynomial degree n. The gap
sizes were fitted to an exponential curve of the form g = aebn.

4. Discussion

The choice of coefficients clearly affects the shape of the level curves. Coefficients of
the form of (8) creates quite circular level curves whereas the form of (9) creates more
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elliptic level curves. The two sets of coefficients also behave different as the parameters
c,m and n are changed.

For the coefficients (8), circular inner curves are produced for c > −0.5 as illustrated
in Figure 2a. However, if Figure 2b is studied closely, it seems that c has to approach
80 before this inner curve takes the form of Figure 1, that is, without interfering, inter-
mediate oscillations. This is unfortunate as we wanted the inner curve to be as large as
possible.

The latter effect is not observed for the coefficients of form (9). Even if the shape of
the inner curve varies with c, and there is a lower limit to keep the curve close to closed
as shown in Figure 6a, is this a macroscopic property, and the level sets overlap locally
close to (x, y) = (1, 0) as shown in Figure 6b.

The same behaviour is observed for varying number of averaging m. For the first
set of coefficients, varying m affects both macroscopic shape and the shape close to
(x, y) = (1, 0). For the second set, only the macroscopic shape is affected. According to
Figure 3b, it seems that m = 2 is optimal as both higher and lower ms yield interfering
oscillations.

By choosing m and c as described above, the effect of increasing n can be studied.
This is illustrated by Figures 3a and 8 for the first set of coefficients, and in Figure 5 for
the second set. The increasing n does affect the gap size while the diameter of the curve
seems constant. This shows that the effect of increasing n is in fact related to the length
of the missing arc, and not the size of the curve as such.
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Figure 8: Level sets for coefficients given in (8) for increasing polynomial degree.

qmn was calculated for discrete values in a grid as described in the Method section. The
contour plots produced by Matlab seems, however, to be continuous. This suggests that
some form of interpolation takes place. Also, due to the nature of numerical calculations,
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the level sets are likely to be chosen as qmn (x, y) = c ± δ, including all values for x and
y that result in a function output in the interval [c − δ, c + δ], where δ > 0. The exact
value of δ is not known, but is believed to be small.

Later projects could benefit of a more objective and less visual way of estimating
values. Also, the curves studied in this project deviate vastly from the unit circle. More
attempts should be made to decrease this deviation.

5. Conclusions

The level sets of the real part of complex polynomials can, due to the mean value
property of harmonic functions, not make closed curves. The arc length needed to close
a level curve decreases as the degree of the polynomial increases for at least two choices
of coefficients.

The choice of coefficients influence the shape (circularity) of the level curve, but to a
minor degree how it behaves. Averaging the polynomials m times seems also to alter the
shape, and m = 2 minimises the needed arc length.

It was not possible to achieve a unit circle-like curve without interfering oscillations
in the area of the missing arc. The choice of constant for the level set depends on
coefficients.

The length of the missing arc decreased as the degree increased. The decline seemed
to fit an exponential model with parameters dependent on the coefficient set.
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Appendix A. Source code

Appendix A.1. Memory usage
Note that even as the relation is iterative, the amount of calculated data needed

increases quickly, the memory required is approximately

xmax − xmin

dz
ymax − ymin

dz (M + 1)(N + 1)64 bits, M = 0, 1

an example is [1, 1] × [−1,−1] and dz = 10−3, yielding a memory requirement of ∼
32(M + 1)(N + 1) MB (making a N = 4000 polynomial demanding ∼ 256 GB free disk
space). The implemented code overwrites old data for averaging so that only m and
m− 1 is kept, removing the memory dependence of M so that the requirement is

xmax − xmin

dz
ymax − ymin

dz (N + 1)128 bits, M ≥ 1

Appendix A.2. Source code

clear all , clc
% This script calculates the level sets of polynomials and

↪→ of averages of
% the polynomials using Casero summation . Level curves are

↪→ saved as figures
% and a latex file (lat.txt) for showing them is created .
%
% The data is saved to a h5 file. Temporary data under /m(m

↪→ #)n(n#) for m# =
% 0,1 and n# equal to the degree of the corresponding q. The

↪→ data of
% interest , for qˆm_n , is saved under /M(m#)N(n#) where m#

↪→ equals m+1 and n# is the degree n.
% Written by Anders H. Jarmund , 2018 ( contact : anderhja @stud

↪→ .ntnu.no)

%% Configurations %%
% Define the domain , z = x + iy
dz = 0.0001; % distance between points
x = [0.988 1.004]; % range of x: [min max]
y = [ -0.008 0.008]; % range of y: [min max]

% Set degree of polynomial and number of times to average
N = 4000; % degree of highest polynomial
N = N + 1; % to include the zeroth
M = 3; % number of times to average
M = M + 1; % as MATLAB is not zero indexed
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signN = [10 100 500 1000 2000 3000 4000]; % list of
↪→ interesting degrees (for comparing ), from 0 to N (not N
↪→ +1)

signM = [0 1 2 3]; % list of interesting ms (for comparing ),
↪→ from 0-M (not M+1)

% Set the level sets , qˆm_n = c
c = [ -0.5 -0.004 0 0.5];

% File name
saveToFiles = 1; % Do calculations and make files? 1 for yes

↪→ , 0 for no.
readFromFiles = 0; % Make plots , save figures and make latex

↪→ file? 1 for yes , 0 for no.
makeLatexFile = 0;
filename = 'studforsk6 '; % Filename of the kept results
filename = [ filename '.h5 ']; %add file ending

% Define the coefficients
a{1} = [0 ones (1,N -1) ]; % a_j = 0, 1
%a{1} = (0:N -1)/N; % a_j = j / N+1

%For each averaging , set the n+1 coefficients
a{2} = 1./((0:N -1) +1); %Using the same coefficients for all

↪→ averages
for i = 3:M

a{i} = a{2};
end

%% You do not have to (but are welcome to) change anything
↪→ below this %%

% Make variables for the domain
x = x(1):dz:x(2);
y = y(2):-dz:y(1);
[xc , yc] = meshgrid (x, y);
z = xc + 1i*yc;

q = zeros(size(z)); % preallocate space for q

if( saveToFiles )
while( exist(filename ,'file ') == 2 )

deleteOlder = input('Do you want to overwrite older
↪→ versions of the file (y for yes)? ','s');

if strcmp ( deleteOlder ,'y')
delete ( filename ) % deletes older versions

else
12



filename = input('\ nEnter a new file name: ','s'
↪→ );

filename = [ filename '.h5'];
end

end

delete temp.h5

h = waitbar (0,'Please wait ... '); % make a waitbar
steps = M * N;
step = 1;

m = 1; % this corresponds to the polynomial , i. e. q_0
zn = ones(size(z));

for n = 0:N-1
q = q + real(a{m}(n+1)*zn); % calculate qˆ0_n
h5create ('temp.h5 ', ['/m0 ' 'n' num2str (n)], size(

↪→ q)) % need two files to contain all
↪→ temporary data

h5create ('temp.h5 ', ['/m1 ' 'n' num2str (n)], size(
↪→ q))

h5write ('temp.h5 ', ['/m' num2str (mod(m ,2)) 'n'
↪→ num2str (n)], q)

waitbar (step / steps , h, ['Please wait ... ('
↪→ num2str (floor(step *100/ steps)) '%) ']) %
↪→ update the waitbar

step = step + 1;
zn = zn.*z; % calculate zˆ(n+1) used in next

↪→ iteration
if( ismember (n, signN)) % if this n is of interest

↪→ , save it for itself
h5create (filename , ['/M1 ' 'N' num2str (n)],

↪→ size(q))
h5write (filename , ['/M1' 'N' num2str (n)], q)

end
end

clear zn;
for m = 2:M % calculate averages qˆm

q = zeros(size(z));
for n = 0:N-1

z = h5read ('temp.h5 ',['/m' num2str (mod(m+1 ,2)) '
↪→ n' num2str (n)]); %z is qˆ(m -1)

q = n*q/(n+1) + a{m}(n+1)*z; % calculate qˆm_n
h5write ('temp.h5 ', ['/m' num2str (mod(m ,2)) 'n'

↪→ num2str (n)], q)
waitbar (step / steps , h, ['Please wait ... ('

↪→ num2str (floor(step *100/ steps)) '%) ']) %
13



↪→ update waitbar
step = step + 1;
if( ismember (n,signN)) % if this n is of interest

↪→ , save it for itself
h5create (filename , ['/M' num2str (m) 'N'

↪→ num2str (n)], size(q))
h5write (filename , ['/M' num2str (m) 'N'

↪→ num2str (n)], q)
end

end
end
delete temp.h5

end

if( readFromFiles )
for C = c

for n = signN
for m = (signM +1)

contour (x,y,real( h5read (filename ,[ '/M'
↪→ num2str (m) 'N' num2str (n)])), [C C], 'b
↪→ ');

axis square ;
xlabel ('Re z')
ylabel ('Im z')
fnam = ['m=' num2str (m -1) ',c=' num2str (C) '

↪→ ,n=' num2str (n)];
save2pdf ([ fnam '.pdf '])
close all

end
end

end
end

if( makeLatexFile )
fID = fopen('lat.txt ','w');
for C = c

fprintf (fID ,'\\ begin{ figure *}[t!]\n')
fprintf (fID ,'\\ centering \n')
for n = signN

for m = (signM +1)
fnam = ['m=' num2str (m -1) ',c=' num2str (C) '

↪→ ,n=' num2str (n)];
fprintf (fID ,'\t\\ begin{ subfigure }[b ]{0.24\\

↪→ textwidth }\n')
fprintf (fID ,'\t\t\\ centering \n')
fprintf (fID ,'\t\t\\ includegraphics [width =\\

↪→ linewidth ]{{ fig /%s}\n',[fnam '}. pdf '])
14



latnam = ['$m=' num2str (m -1) ', n=' num2str (
↪→ n) '$'];

fprintf (fID ,'\t\t\\ caption {%s}\n',latnam )
if(mod(m ,4))

fprintf (fID ,'\t\\ end{ subfigure }%%\n˜\n')
else

fprintf (fID ,'\t\\ end{ subfigure }%%\n\n')
end

end
end
fprintf (fID ,'\\ caption { Caption place holder }\n')
fprintf (fID ,'\\ end{ figure *}\n\n\n')

end
fclose (fID);

end

15


	Introduction
	Harmonic functions
	Problem

	Method
	Results
	First set of coefficients
	Second set of coefficients
	Exponential model

	Discussion
	Conclusions
	Source code
	Memory usage
	Source code


