
Computing almost split sequences
A StudForsk project supervised by Øyvind Solberg

Johanne Haugland and Eivind Otto Hjelle

December 2, 2016

1 Introduction

Almost split sequences is an important concept in the representation theory of finite
dimensional algebras. These sequences are often difficult to compute by hand, and it is
necessary to develop computational tools for this purpose.

One attempt to construct an algorithm to compute almost split sequences was made by
Lian in her Master’s Thesis from 2012. Her aim was to compute almost split sequences
ending in an indecomposable and non-projective finitely generated module over a spec-
ified ring Λ. By [Lia12, Proposition 61] all almost split sequences in mod(Λ) will be
of this form. When Marek Trunkat tried to implement Lian’s work in the GAP package
QPA (Quivers and Path Algebras)[GS16], it turned out that the algorithm did not always
give the correct result. The aim for this project has been to figure out why this is the
case, and to investigate if it is possible to make the algorithm work as intended.

We start by explaining the idea behind Lian’s algorithm, while referring to her thesis.
We then proceed to pointing out why the algorithm does not work.

2 Lian’s Algorithm

Throughout this section,

1. let k be a field,

2. let Λ be a finite dimensional algebra over k,

1



3. let X be an indecomposable, non-projective and finitely generated left Λ-module,

4. and let Γ :=EndΛ(X) be the quotient of EndΛ(X) by the submodule of morphisms
that factor through projective modules. This is a local ring by [Lia12, Lemma 64].

2.1 Rough sketch of Lian’s algorithm

By [Lia12, Theorem 69(ii)], the set of almost split exact sequences

0 // DTr(X) // Y // X // 0

over Λ is a finitely generated Γ-module isomorphic to E := SocΓ

(
Ext1

Λ
(X ,DTr(X))

)
.

This is the module we want to compute.

As a special case of the Auslander-Reiten formula there is a Γ-isomorphism

ωX : DΓ→ Ext1Λ(X ,DTr(X)).

This isomorphism is explicitly constructed in Chapter 3 of Lian’s thesis. Consequently,
there is a Γ-isomorphism

SocΓ(ωX) : SocΓ (DΓ)→ E.

The Γ-module SocΓ(DΓ) is simple by [Lia12, Lemma 67]. The idea behind Lian’s
algorithm is to find a non-zero element y∈ SocΓ(DΓ) and apply ωX , because then ωX(y)
is a generator of E.

2.2 The mistake in Lian’s thesis

We will now outline Lian’s approach to finding a non-zero element in SocΓ(DΓ). It
is this argument that contains the subtle mistake in Lian’s thesis. Our outline is not
completely faithful to Lian, but the essence of the argument remains the same.

By [Lia12, Lemma 67] there is a natural Γ-isomorphism

SocΓ(DΓ)∼= DTopΓop(Γ),

so any non-zero element of SocΓ(DΓ) corresponds to a non-zero element of
DTopΓop(Γ).

2



Clearly the equivalence class 1X ∈ TopΓop(Γ) is non-zero. Any choice of k-basis for
TopΓop(Γ) yields a k-isomorphism

d : TopΓop(Γ)→ DTopΓop(Γ),

and then d(1X) is a non-zero element of DTopΓop(Γ).

Up to this point everything is logically sound. However, what we have done is compu-
tationally expensive because we have computed TopΓop(Γ), which involves computing
the radical of Γ.

To make the algorithm more efficient, Lian did the following. Extend
{

1X
}

to a basis{
1X ,v2, . . . ,vn

}
for Γ. This yields a k-isomorphism

d : Γ→ DΓ

Lian claims that d(1X) ∈ SocΓ(DΓ). However, this is not true in general:

Proposition 2.1. We have d(1X) ∈ SocΓ(DΓ) if and only if the radical r of Γ is con-
tained in span{v2, . . . ,vn}.

Proof. By construction of d, we have

kerd(1X) = span{v2, . . . ,vn} .

And from the proof of [Lia12, Lemma 67] it is clear that

SocΓ DΓ = { f ∈ DΓ : r ⊆ ker f} .

Combining these facts yields the result.

Remark 2.2. If r = 0, then r ⊆ span{v2, . . . ,vn} trivially. So Lian’s algorithm works in
this case. In particular, Lian’s algorithm works if dimk Γ = 1.

2.3 There is no way around computing the radical

Computing the radical r of Γ is expensive, and one advantage of Lian’s algorithm is that
it does not require the computation of r. But, as we have seen, Lian’s algorithm does
not work in general. One might hope that the mistake in Lian’s thesis could be “fixed”,
yielding an efficient algorithm that does not require the radical to be computed. Unfor-
tunately, it turns out that knowing SocΓ DΓ is equivalent to knowing r up to problems
of linear complexity. We are now going to describe how to construct SocΓ DΓ given r,
and the other way around.

3



Suppose that we know r. Then we also know TopΓop(Γ), and we have a canonical
projection

p : Γ→ TopΓop(Γ).

Applying D we get a map
p∗ : DTopΓop(Γ)→ DΓ,

and im p∗ = SocΓ DΓ (see [Lia12, Lemma 67]).

Conversely, suppose that we know SocΓ DΓ. This is a simple left Γ-module. So if
f ∈ SocΓ DΓ is any non-zero element, the Γ-homomorphism

φ : Γ→ SocΓ D
a 7→ a · f

is an epimorphism. Hence we have an isomorphism

Γ/kerφ ∼= SocΓ D.

Since SocΓ D is simple, kerφ is a maximal left ideal. But Γ has a unique maximal left
ideal since it is a local ring, so kerφ = r is the only possibility.

3 Acknowledgements

We would like to thank Olav Thon Stiftelsen for financial support and Øyvind Solberg
for great supervision.

References

[GS16] E. Green and Ø. Solberg. QPA, Quivers and Path Algebras, Version 1.25.
http://www.math.ntnu.no/~oyvinso/QPA/. GAP package. Oct. 2016.

[Lia12] Tea Sormbroen Lian. “Computing Almost Split Sequences”. MA thesis. Nor-
wegian University of Science and Technology, 2012.

4


