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1 Introduction

The Evolutionary p-Laplace equation,

@u

@t
= r · (|ru|p�2ru) (1)

is a parabolic partial di↵erential equation which has an explicit fundamental
solution, the so called Barenblatt solution, found in 1951,

Bp(x, t) = t�
n
�

n
c� p� 2

p
�

1
1�p

⇣ |x|
t

1
�

⌘ p
p�1

o p�1
p�2

+
, (2)

where � := n(p � 2) + p and p > 2. We would like to look at some of the
properties of the Barenblatt solution, and in particular determine the constant,
c, which normalizes (2).

Firstly it is beneficial to introduce some notation that are used. The notation
used in the Barenblatt solution is given by

{a}+ =

⇢
a : a � 0
0 : a < 0

meaning the solution is identically zero when the expression inside the bracket
is negative.

The Laplace operator is defined as followed

� = r ·r =
nX

i=1

@2

@x2
i

.

We call two functions, f and g, asymptotically equal

f ⇠ g for x �! 1, if lim
x�!1

f(x)

g(x)
= 1.
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We also need to define the gamma function, as it is frequently used through-
out the calculations. The gamma function is defined as [1]

�(x) =

Z 1

0
tx�1e�tdt,

and the closely related beta function, is given by

B(↵,�) =

Z 1

0
(1� t)↵�1t��1dt =

�(↵)�(�)

�(↵+ �)
.

2 Verifying the Barenblatt solution

Before continuing with the properties of the Barenblatt solution, we would like
to confirm that (2) is a solution to (1).

Proof. We‘ll start by finding the derivative with respect to t, which is given by

@Bp

@t
= �Bp

⇣ n

�t
� �

p
1�p

|x|
t
1��
�

⇣ |x|
t

1
�

⌘ 1
p�1

n
c� p� 2

p
�

1
1�p

⇣ |x|
t

1
�

⌘ p
p�1

o�1

+

⌘
. (3)

Now let us first take look at the case n = 1, thereby obtaining the following
derivative with respect to x

@Bp

@x
= �

⇣
t�

1
��

1
1�p

⇣ |x|
t

1
�

⌘ 1
p�1 sign(x)

t
1
�

n
c� p� 2

p
�

1
1�p

⇣ |x|
t

1
�

⌘ p
p�1

o 1
p�2

+

⌘
(4)

from this it is quite easy to see

���
@Bp

@x

��� =
⇣
t�

1
��

1
1�p

⇣ |x|
t

1
�

⌘ 1
p�1 1

t
1
�

n
c� p� 2

p
�

1
1�p

⇣ |x|
t

1
�

⌘ p
p�1

o 1
p�2

+

⌘
. (5)

which gives us the following expression

���
@Bp

@x

���
p�2 @Bp

@x
= ���1(t�

p�1
� )2xBp.

From the product rule of di↵erentiation and the fact that n = 1 and � =
2(p� 1), we are left with

@

@x

⇣���
@Bp

@x

���
p�2 @Bp

@x

⌘
= ���1t�1

⇣
Bp + x

@Bp

@x

⌘
. (6)

By comparing (3) and (6) we are left with

@Bp

@t
=

@

@x

⇣���
@Bp

@x

���
p�2 @Bp

@x

⌘
, (7)

which means (2) is a solution to (1) for n = 1.
For n > 1, meaning x = (x1, . . . , xn) 2 Rn. We define |x| := kxk2 =p
x2
1 + · · ·+ x2

n, as the standard norm in Rn.
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The gradient of (2) is given by

rBp =
⇣@Bp

@x1
, . . . ,

@Bp

@xn

⌘
, (8)

where

@Bp

@xi
= �t�

n
� �

1
1�p

⇣ |x|
t

1
�

⌘ 1
p�1 1

t
1
�

n
c� p� 2

p
�

1
1�p

⇣ |x|
t

1
�

⌘ p
p�1

o 1
p�2

+

xi

|x| (9)

which means that (8) can be written as

rBp = t�
n
� �

1
1�p

⇣ |x|
t

1
�

⌘ 1
p�1 1

t
1
�

n
c� p� 2

p
�

1
1�p

⇣ |x|
t

1
�

⌘ p
p�1

o 1
p�2

+

x

|x| , (10)

and from (10) it is clear that

|rBp| = t�
n
� �

1
1�p

⇣ |x|
t

1
�

⌘ 1
p�1 1

t
1
�

n
c� p� 2

p
�

1
1�p

⇣ |x|
t

1
�

⌘ p
p�1

o 1
p�2

+
, (11)

From combining (10) and (11), we end up with the following expression

|rBp|p�2rBp =
xBp

�t
. (12)

This means, by using the product rule for a scalar and a vector, we are left with

r ·
⇣xBp

�t

⌘
=

1

�t

�
Bpr · x+ x ·rBp

�
. (13)

By comparing (3) and (12) we have that

@u

@t
= r · (|ru|p�2ru),

which shows that (2) is a solution to (1).

3 Determining the constant

3.1 Introduction

Let the domain ⌦ = {x 2 Rn|Bp(x, t) 6= 0}, i.e. ⌦ = supp(Bp). Now notice
that

d

dt

Z

Rn

Bpdx =

Z

Rn

@Bp

@t
dx

=

Z

Rn

r · (|rBp|p�2rBp)dx

=

I

@⌦
|rBp|p�2rBp · n̂dS
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In section 2, we found an expression for the integrand, given by (12), which
results in the following integral

I

@⌦

xBp

�t
· n̂dS = 0,

since Bp is zero at the boundary. Therefore we can conclude that.

Z

Rn

Bpdx = Constant.

We now want to determine the constant, c, which normalize the Barenblatt
solution, i.e. Z

Rn

Bpdx = 1.

3.2 Determining the constant in R
Let us first look at case n = 1, which means the integral is given as

Z

Rn

t�
n
�

n
c� p� 2

p
�

1
1�p

⇣ |x|
t

1
�

⌘ p
p�1

o p�1
p�2

+
dx = 1, (14)

notice that the integral is symmetric around the origin. Therefore we can rewrite
the integral as

Z 1

�1
t�

1
�

n
c�p� 2

p
�

1
1�p

⇣ |x|
t

1
�

⌘ p
p�1

o p�1
p�2

+
dx = 2

Z 1

0
t�

1
t

n
c�p� 2

p
�

1
1�p

⇣ |x|
t

1
�

⌘ p
p�1

o p�1
p�2

+
dx.

Since (2) is zero for every value given by

c <
p� 2

p
�

1
1�p

⇣ |x|
t

1
�

⌘ p
p�1

,

we have that the limit of the integral is given by

x̄ = t
1
�

⇣p�
1

p�1

p� 2
c
⌘ p�1

p
, (15)

and are left with the following equation

2t�
1
� c

p�1
p�2

Z x̄

0

n
1� 1

c

p� 2

p
�

1
1�p

⇣ x

t
1
�

⌘ p
p�1

o p�1
p�2

+
dx = 1. (16)

From here we can use the following transformation

y =
1

c

p� 2

p
�

1
1�p

⇣ x

t
1
�

⌘ p
p�1

,

dy = t�
1
� y

p

p� 1

⇣ x

t
1
�

⌘�1
dx,
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leaving us with

2c
p�1
p�2

p� 1

p

⇣ p

p� 2

c

�
1

1��

⌘ p�1
p

Z 1

0
(1� y)

p�1
p�2 y

p�1
p �1dy = 1.

which means that

c
2(p�1)2

p(p�2) =
p

2�
1
p (p� 1)B( 2p�3

p�2 , p�1
p )

⇣p� 2

p

⌘ p�1
p
, (17)

and the constant is given by

c =
n p

2�
1
p (p� 1)B( 2p�3

p�2 , p�1
p )

⇣p� 2

p

⌘ p�1
p
o p(p�2)

2(p�1)2

. (18)

3.3 Determining the constant in Rn

We will now determine the constant for n > 1, by looking at the integral
Z

Rn

Bp(x, t)dx = 1, (19)

now where x 2 Rn. First we can rewrite the integral in spherical coordinates
and notice the angular independence of the integrand, leaving us with

t�
n
�

Z r̄

0

n
c� p� 2

p
�

1
1�p

⇣ r

t
1
�

⌘ p
p�1

o p�1
p�2

+
rn�1Area(Sn)dr = 1, (20)

where Area(Sn) = 2⇡n/2/�(n/2), is the area of the unit sphere in Rn. See
Appendix A for the calculation. We can use the same transformation as for
n = 1, i.e.

y =
1

c

p� 2

p
�

1
1�p

⇣ r

t
1
�

⌘ p
p�1

,

dy = t�
1
� y

p

p� 1

⇣ r

t
1
�

⌘�1
dr,

and we obtain the following equation,

2⇡
n
2

�(n2 )

p� 1

p

⇣ p

p� 2

c

�
1

1�p

⌘n(p�1)
p

c
p�1
p�2

Z 1

0
(1� y)

p�1
p�2 y

n(p�1)
p �1dy = 1.

From here we are left with

c
p�1
p�2+

n(p�1)
p =

p�(n2 )

2⇡
n
2 �

n
p (p� 1)B( 2p�3

p�2 , n(p�1)
p )

⇣p� 2

p

⌘n(p�1)
p

, (21)

which can be rewrite as

c =
n p�(n2 )

2⇡
n
2 �

n
p (p� 1)B( 2p�3

p�2 , n(p�1)
p )

⇣p� 2

p

⌘n(p�1)
p

o 1
p�1
p�2

+
n(p�1)

p . (22)

Notice that (22) goes to (18) as n �! 1.

5



4 Verifying weak solution property

We want to verify the weak solution property of function (2). Given a test
function � 2 C1

0 (Rn ⇥ (0,1)), which is defined in a closed bounded domain
M ⇢ Rn ⇥ (0,1), and vanishes outside [2]. Then if

Z 1

0

Z

Rn

Bp(x, t)
@�

@t
dxdt =

Z 1

0

Z

Rn

|rBp(x, t)|p�2rBp(x, t) ·r�dxdt, (23)

Bp is called a weak solution.

Proof. By multiplying � to (1), and integrate, we obtain

Z 1

0

Z

Rn

�
@Bp

@t
dxdt =

Z 1

0

Z

Rn

�r · (|rBp|p�2rBp)dxdt. (24)

Let us first look at the left-hand side of (24). By integration by parts, one
obtains

Z 1

0

Z

Rn

�
@Bp

@t
dxdt =

Z 1

0

Z

Rn

@(Bp�)

@t
dxdt�

Z 1

0

Z

Rn

Bp
@�

@t
dxdt.

Since both Bp and � have continuous partial derivatives in M , we can rewrite
the first integral on the right-hand side,

Z 1

0

Z

Rn

@(Bp�)

@t
dxdt =

Z

Rn

Z 1

0

@(Bp�)

@t
dtdx = 0,

since � is zero on @M . From this we obtain the following identity

Z 1

0

Z

Rn

�
@Bp

@t
dxdt = �

Z 1

0

Z

Rn

Bp
@�

@t
dxdt. (25)

Let us now look at the right-hand side of (24). Once again by integration
by parts one obtain

Z 1

0

Z

Rn

�r · (|rBp|p�2rBp)dxdt =

Z 1

0

Z

Rn

r · (�|rBp|p�2rBp)dxdt

�
Z 1

0

Z

Rn

|rBp|p�2rBp ·r�dxdt.

From the divergent theorem applied on first integral on the right-hand side, and
the fact that � is zero on @M , we are left with

Z 1

0

Z

Rn

�r · (|rBp|p�2rBp)dxdt = �
Z 1

0

Z

Rn

|rBp|p�2rBp ·r�dxdt, (26)

and by combining (24), (25) and (26), we obtain (23). Therefore (2) satisfy the
weak solution condition.
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5 Special case

5.1 The heat equation

For the special case p = 2, we can see that (1) becomes

@u

@t
= �u, (27)

which is known as the heat equation. A known solution to the heat equation is

u(x, t) =
e�

|x|2
4t

(4⇡t)
n
2
, (28)

where x 2 Rn and t 2 (0,1).

Proof. The proof is a simple calculation.
First we‘ll find that

@u

@t
= u

⇣ |x|2

4t2
� n

2t

⌘
, (29)

and that
@u

@xi
= �xi

2t
u,

hence the gradient of (28) is given by

ru = � x

2t
u. (30)

From the definition of the Laplace operator, we have the following result

�u = r ·ru = r ·
⇣
� x

2t
u
⌘
.

By using the product rule for divergence we are left with

� 1

2t
(ru · x+ ur · x) = u

⇣ |x|2

4t2
� n

2t

⌘
. (31)

By comparing (29) and (31) we can see that (28) is a solution to the heat
equation.

Lemma 5.1. Let the solution to the heat equation, u, be given as in (28), then
u is normalized, i.e. Z

Rn

udx = 1
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Proof. Let u be given as in (28), then

Z

Rn

udx =

Z 1

�1
· · ·

Z 1

�1

e�
x2
1+···+x2

n
4t

(4⇡t)
n
2

dx1 . . . dxn

=
1

(4⇡t)
n
2

nY

i=1

Z 1

�1
e�

x2
i

4t dxi

= (⇡)�
n
2

nY

i=1

Z 1

�1
e�y2

i dyi

= 1,

which show that u is normalized.

From lemma 5.1 we can see that both the solution to the heat equation
and the Barenblatt solution are normalized1. As p �! 2 and the Evolutionary
p-Laplace equation goes to the heat equation, we would therefore assume that
the Barenblatt solution would go towards (28).

To show that that the Barenblatt solution goes to the heat solution, we will
use the property of Stirling’s formula [3],

�(n+ ⌘)

�(n+ ✓)
⇠ n⌘�✓,

which means that we have the asymptotic behavior of the Beta function given
by

B(↵,�) ⇠ �(�)↵�� ,

for ↵ � �, and therefore we are left with

c ⇠
n p�(n2 )

2⇡
n
2 �

n
p (p� 1)�(n(p�1)

p )

⇣p� 2

p

2p� 3

p� 2

⌘n(p�1)
p

o 1
p�1
p�2

+
n(p�1)

p , (32)

and notice that the expression inside the bracket converges to (4⇡)�n/2, and we
have

lim
p�!2

c = 1. (33)

If we now look at the Barenblatt solution, we have

Bp(x, t) = t�
n
� c

p�1
p�2

n
1� p� 2

cp
�

1
1�p

⇣ |x|
t

1
�

⌘ p
p�1

o p�1
p�2

+
. (34)

If we focus on the constant outside the bracket, we have

c
p�1
p�2 ⇠

n p�(n2 )

2⇡
n
2 �

n
p (p� 1)�(n(p�1)

p )

⇣p� 2

p

2p� 3

p� 2

⌘n(p�1)
p

o p�1

(p�1)+
n(p�1)(p�2)

p , (35)

1At least for the constant given by (22).
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and notice that
lim
p�!2

c
p�1
p�2 = 2�n⇡�n

2 = (4⇡)�
n
2 , (36)

This means that we have2

lim
p�!2

Bp = (4⇡t)�
n
2 e�

|x|2
4t , (37)

which show that the Barenblatt solution goes towards the solution of the heat
equation as p �! 2.

6 Conclusion

We have shown that (2) is a solution to (1), and the weak solution property.
When we normalized the Barenblatt solution, we found that the constant was
given by

c =
n p�(n2 )

2⇡
n
2 �

n
p (p� 1)B( 2p�3

p�2 , n(p�1)
p )

⇣p� 2

p

⌘n(p�1)
p

o 1
p�1
p�2

+
n(p�1)

p . (38)

for x 2 Rn. With this constant, we also showed that Barenblatt solution goes
towards the fundamental solution of the heat equation as p �! 2, which is what
we would expect as (1) goes to the heat equation.

A Area of the n-dimensional unit sphere

We want to calculate the area of the n-dimensional unit sphere, Sn = {x 2 Rn :
|x|  1}. First let us look at the integral

Z 1

�1
· · ·

Z 1

�1
e�(x2

1+···+x2
n)dx1 . . . dxn =

nY

i=1

Z 1

�1
e�x2

i dxi = (
p
⇡)n. (39)

On the other hand, we can also rewrite the integral in equation (39) in
spherical coordinates, and notice that the integrand is angular independent.
Hence we have

Z 1

�1
· · ·

Z 1

�1
e�(x2

1+···+x2
n)dx1 . . . dxn =

Z 1

0
e�r2rn�1dr

Z
· · ·

Z
dSn, (40)

where the last integrals are the area of the unit sphere. By changing variables
from r2 = t, we have

Area(Sn)

2

Z 1

0
e�tt

n
2 �1dt =

Area(Sn)

2
�(

n

2
),

Therefore by combining equation (39) and (40), we can write the area of the
unit sphere as

Area(Sn) =
2⇡

n
2

�(n2 )
. (41)

2From the definition, ex := limn�!0(1 + xn)
1
n
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B Visualization of the Barenblatt solution in R2

Here we would like to give a small visualization of the Barenblatt solution for
di↵erent values of p, as well as the solution to the heat equation from (28). All
of the plots consists of four subplots, each one at a di↵erent value of t. This
is to show the propagation of (2) and (28). Notice the similarity between the
Barenblatt solution for p = 2.01 found in figure 5 and the solution to the heat
equation as seen in figure 6. This makes sense from what we showed in section
5.

Figure 1: The Barenblatt solution with p = 10, shown at t = 0.01 in the top
left, t = 0.3 in the top right, t = 0.6 in the bottom left and t = 1 in the bottom
right

Figure 2: The Barenblatt solution with p = 5, shown at t = 0.01 in the top left,
t = 0.3 in the top right, t = 0.6 in the bottom left and t = 1 in the bottom right

10



Figure 3: The Barenblatt solution with p = 3, shown at t = 0.01 in the top left,
t = 0.3 in the top right, t = 0.6 in the bottom left and t = 1 in the bottom right

Figure 4: The Barenblatt solution with p = 2.5, shown at t = 0.01 in the top
left, t = 0.3 in the top right, t = 0.6 in the bottom left and t = 1 in the bottom
right
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Figure 5: The Barenblatt solution with p = 2.01, shown at t = 0.01 in the top
left, t = 0.3 in the top right, t = 0.6 in the bottom left and t = 1 in the bottom
right

Figure 6: The solution to the heat equation, shown at t = 0.01 in the top left,
t = 0.3 in the top right, t = 0.6 in the bottom left and t = 1 in the bottom right
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