
Rooted forests without odd symmetries

Lise Millerjord

March 14, 2019

Abstract

A rooted forest is called even if every automorphism induces an even per-
mutation of the edges. This project aims to determine the number of even
rooted forests with n edges. Two different strategies have been adopted,
yielding the same results and a surprising link between the number of even
rooted trees with n edges and chiral n–ominoes in (n− 1)–space with one
cell marked was observed. This leads to the conjecture that there is a
bijection between these different objects and hence a generating function
for the even rooted trees. The number of even rooted forests can be found
using combinatorics, but a generating function has not yet been obtained.

1 Introduction

In this project, the symmetries of trees and forests are discussed. A rooted
forest is called even if every automorphism induces an even permutation of the
edges. The aim of this report is to give the details of the strategy adopted to
find the number of even rooted forests with n edges and the results obtained.
The ultimate goal is to find a generating function of the number of even rooted
forests.

To find all the forests matching all of the criteria, two different strategies
were adopted:

1. The first strategy is a brute force method of producing all possible forests
with n edges and then removing from the list all forests that have odd
symmetries. This method is quite resource intensive, but was nevertheless
useful as it produces accurate results.

2. The second strategy was an application of combinatorics that is less re-
source intensive but demands an accurate grasp of how to determine
whether or not a forest will have odd symmetries. This method also
requires knowledge about the number of rooted trees without odd sym-
metries that have less than or equal to n edges.

The two methods yielding the same results gives confidence to the results ob-
tained. Further details on the different approaches is included in section ??.

1

1.1 Numerical results

The numerical results obtained are shown in Table ??.

Table 1: Number of even trees and forests with n edges

n Even trees Even forests
0 1 1
1 1 1
2 1 1
3 2 3
4 4 7
5 8 15
6 16 32
7 34 74
8 75 175
9 166 405
10 370 939

1.2 Graphical results

Figures of the even rooted trees (up to n = 6) and even rooted forests (up
to n = 6) found are included in Appendix A.1 and Appendix A.2 respectively.

1.3 Generating series

When writing tn for the numbers on the left hand side of Table ??, and fn for
those on the right, then the relation between these is∑

n=0

fnx
n =

∏
m>1

(
1 + (−1)m+1xm

)(−1)m+1tm
.

This means

1 + x + x2 + 3x3 + 7x4 + 15x5 + 32x6 + 74x7 + 175x8 + 405x9 + . . .

=
(1 + x)(1 + x3)2(1 + x5)8(1 + x7)34(1 + x9)166 . . .

(1− x2)(1 + x4)4(1 + x6)16(1 + x8)75 . . .
.

1.4 Connection to n–ominoes

To see if these integer sequences have appeared before or are known, the The
On-Line Encyclopedia of Integer Sequences [?] was used. The integer sequence
for even trees found one match (for the sequence up to n = 10 as this is all
the data we have): A045648, and it corresponded to the number of n–ominoes

2

in (n − 1)–space with one cell labelled. The integer sequence for even forests
found no matches.

These results lead to the following conjecture:

Conjecture 1 There exists a bijection between the even rooted trees with n
edges and the chiral n–ominoes in (n− 1)–space with one cell labelled [?].

Definition 1 An n–omino is an object consisting of exactly n cells. A chiral
object is asymmetric in such a way that the object and its mirror image are
not superimposable. Chiral n–ominoes in (n − 1)–space with one cell
labelled[?] are therefore objects with exactly n (n− 1)–dimensional cells, glued
together at their (n − 2)–dimensional boundaries, in (n − 1)–space, where one
of the cells is distinguished from the others and where the object and its mirror
image are not superimposable.

The one-dimensional cells are lines, the two-dimensional cells are squares
and the three-dimensional cells are cubes. A 4–omino will therefore consist of
four cubes glued together at the sides (one of the six squares that make up its
boundary), existing in 3–space.

Acknowledgements

I would like to express my special thanks and gratitude to my advisor, Markus,
for all his patience and support. The time spent in fruitful discussion has been
invaluable to my progress. Also thanks to the department for providing this
opportunity through the StudForsk project.

2 Background

It is assumed that the reader has some knowledge of basic abstract algebra and
other elementary branches of mathematics, but this section intends to define and
explain the specific notation and terms used in this project. Some elementary
definitions:

2.1 Graphs

Definition 2 A graph is a pair (V,E) consisting of a set V of vertices and a
set E of edges. Edges are pairs of exactly two distinct vertices and are visualised
as connecting these two vertices.

Definition 3 A tree is a connected, non-cyclic graph, so the path from one
vertex to another is unique. A rooted tree is a tree in which one vertex is
distinguished from the others, the root.

Definition 4 A forest is a set of trees, that is a graph consisting of one or
more trees. A rooted forest is a forest in which every tree is rooted.

3

Note that there is a canonical bijection between the set of edges and the set
of non-roots: it is given by assigning to an edge the vertex that is farther away
from the root.

Definition 5 A child of a specific vertex in a rooted tree is a vertex that is
directly connected to this specific vertex by an edge and is farther away from the
root than this vertex. In particular, a child of the root is any vertex that is
directly connected to the root by an edge.

2.2 Symmetries

This project concerns itself with symmetries of trees and forests. Some defi-
nitions are included to describe what is meant by the different terms in this
context.

Definition 6 An automorphism of a tree or forest is a permutation of the
vertices that sends edges to edges and the roots are pointwise preserved.

Since an automorphism permutes vertices while respecting edges, it is also
possible to view it as permuting edges while respecting vertices. In other words,
the automorphism group of the tree or forest acts on both the vertices and the
edges.

There are two ways of counting the transpositions, as there are two actions
defined on the trees, either on the vertices or on the edges.

In this case, the action on edges are of interest and therefore the decision
of whether or not a symmetry is even will be based on counting the number of
transpositions of edges. Because of the canonical bijection between the set of
edges and the set of non-roots, it does not matter.

So we view the automorphism group Aut(G) of the graph (in our case a tree
or a forest) as a subgroup of the symmetry group Sym(V) of the set of vertices.
The symmetry group also acts on the set E of edges.

Definition 7 A symmetry of a tree or forest is called odd if it induces an odd
number of transpositions on the edges. It is called even if it induces an even
number of transpositions on the edges.

In order to check if a tree or forest is even, its automorphism group must be
inspected.

Definition 8 A tree or forest is called even if all its symmetries are even, that
is it has no odd symmetries.

In particular, we say that the graph G is even if the composition

Aut(G) −→ Sym(E)
sign−−→ {±1}

is trivial.
It is known how many rooted trees and forests there are. But what happens

if we restrict the symmetries of these? This project aims to find the number of
even rooted forests, that is forests that have no odd symmetries.

4

3 Method

The results presented in section ?? were obtained by implementing the ap-
proaches explained in this section.

The open-source software and programming language GAP [?] was used to
perform computations and implement the algorithms described in this report.
All computation is performed using GAP [?] and the code used for implementing
the first two approaches is included in Appendix B.

The three strategies are the following:

3.1 Method for finding even rooted trees

In order to find all even rooted trees with exactly n, the algorithm described by
Beyer and Hedetniemi [?] was used to produce all trees with exactly n vertices.
We have that a tree with exactly n vertices has exactly n− 1 edges and hence
the list generated by using the Beyer Hedetniemi procedure for n− 1 vertices
will give us all rooted trees with n edges.

The automorphism group for each of the trees produced is inspected. If it
contains any automorphism that induces an odd number of transpositions of
the edges of the tree, the tree is discarded. Otherwise, the tree is even and it is
hence added to the list of even rooted trees with n edges.

3.2 Method for finding even rooted forests

To find all even rooted trees with n edges, first all rooted trees with 2n edges
are found. From this list, all trees for which the root has exactly n children,
that is the trees have exactly n vertices next to the root, are chosen. For each
of these trees do the following:

• Cut off the root and its edges. Now we are left with a forest containing
exactly n edges since we cut off exactly n edges in this process.

• Make all the vertices next to the original root a new root if they have
any children. This means if the new root is the root of a tree containing
nothing but the root, we ignore it, but if this root has children, then we
keep it.

• We now have a forest containing at most n trees with exactly n edges in
total.

• Lastly, the automorphism group of this forest is computed. If there is no
automorphism of the forest that induces an odd number of permutations
of edges, the forest is even rooted and hence added to the list of even
rooted forests. Otherwise, the forest is discarded.

At this point, the list of even rooted forests is complete because there is
a bijection between all forests with n edges and all trees with 2n edges where

5

the root has exactly n children. This bijection is shown in figure ?? for forests
with 2 edges.

Figure 1: The bijection between forests with 2 edges and trees with 4 edges
where the root has exactly 2 children.

3.3 A combinatorial approach for finding even rooted forests

Wilson [?] has described a combinatorial approach that uses the fact that forests
are made up of one or more trees, and that the sum of the edges of the individual
trees is the number of edges of the forest. This approach requires that we
already know the number of even rooted trees of with i edges for 1 ≤ i ≤ n.
The approach consist of the following steps:

1. Find the maximum number of trees the forest can consist of: An even
rooted forest of n edges can contain at most dn2 e trees.

For n = 4, the maximum number of trees the forest can contain is 2.

2. Find the combinations of sizes of trees (that is, the number of edges for
each tree) that will make a forest of size n.

For n = 4 we have 0 + 4 = 4, 1 + 3 = 4, 2 + 2 = 4.

3. Count how many forests there are for each of the combinations in the
previous step and sum these.

6

For n = 4 we have 0 + 4 gives 1× 4 = 4 different forests (since there
is 1 tree with 0 edges and 4 trees with 4 edges), 1 + 3 gives 1 × 2 = 2
different forests and 2 + 2 gives 1× 1 = 1 forest. 4 + 2 + 1 = 7 forests in
total.

In the original method presented by Wilson [?], there was one adjustment
when the combinations from step 2 had repeated terms: When the repeated term
is odd, because we cannot have two of the same forest with an odd number of
edges, the binomial coefficient is used: If we have 3 + 3 = 6, we have

(
2
2

)
= 1

forest.
This method apparently leads to an error when the repeated term is even.

When 4 + 4 = 8 we do not have 4× 4 = 16 forests as this would mean counting
some forests twice. In fact, this is a combination with repetition and hence
if we have n objects and should choose r objects with repetition and order
does not matter, we have

(
n+r−1

r

)
different choices. So for n = 8 and the

combination 4 + 4 we have
(
4+2−1

2

)
=
(
5
2

)
= 10 forests. This explains the

discrepancy between our table and the one in Wilson for n = 8.

A Appendix

A.1 Trees

This appendix contains figures of rooted trees up to n = 6 edges.

Figure 2: n = 1: 1 even rooted tree with 1 edge.

Figure 3: n = 2: 1 even rooted tree with 2 edges.

Figure 4: n = 3: 2 even rooted trees with 3 edges.

7

Figure 5: n = 4: 4 even rooted trees with 4 edges.

Figure 6: n = 5: 8 even rooted trees with 5 edges.

8

Figure 7: n = 6: 16 even rooted trees with 6 edges.

A.2 Forests

This appendix contains figures of even rooted forests up to n = 6 edges.

Figure 8: n = 1: 1 even rooted forest with 1 edge.

9

Figure 9: n = 2: 1 even rooted forest with 2 edges.

Figure 10: n = 3: 3 even rooted forests with 3 edges.

Figure 11: n = 4: 7 even rooted forests with 4 edges.

10

Figure 12: n = 5: 15 even rooted forests with 5 edges.

11

Figure 13: n = 6: 32 even rooted forests with 6 edges.

B Appendix

This ontains the GAP code used to produce the number of and list of even
rooted trees and forests with n edges.

B.1 Trees

LevelSequenceToTree := function(L)

local T, i, j;

T := [];

for i in [1..Length(L)-1] do

j := i+1;

while j<=Length(L) and L[i]<L[j] do

if L[j] = L[i]+1 then

Add(T,[i,j]);

fi;

j := j+1;

12

od;

od;

return(T);

end;

###

BeyerHedetniemi := function (L)

local S, T, p, q, i;

S := L;

p := Maximum(PositionsProperty(L, l -> l>2));

T := List([1..p], x->L[x]);

q := Maximum(Positions(T, L[p]-1));

for i in [1..Length(L)] do

if i>=p then

S[i]:=S[i-(p-q)];

fi;

od;

return S;

end;

###

ListOfRootedTrees := function(n)

local First, Last, Current, Out, L, t;

L:=[];

First:=List([1..n],x->x);

#Print(First,"\n");

#Print(LevelSequenceToTree(First),"\n\n");

Append(L,[LevelSequenceToTree(First)]);

Last:=List([1..n],x->2); Last[1]:=1;

Current:= First;

while not Current = Last do

Current := BeyerHedetniemi (Current);

#Print(Current,"\n");

#Print(LevelSequenceToTree(Current),"\n\n");

t:=LevelSequenceToTree(Current);

Append(L,[t]);

od;

return L;

end;

#Print("\nListOfRootedTrees(n);\n");

13

###

NumberOfRootedTrees := function(n)

return Length(ListOfRootedTrees(n));

end;

#Print("\nNumberOfRootedTrees(n);\n");

###

LoadPackage("GRAPE");

TreeFromListOfEdges:= function(L)

local v, G, e;

v:=Maximum(Flat(L)); # number of vertices

G:=NullGraph(Group(()), v);

for e in L do

AddEdgeOrbit(G, e);

od;

return G;

end;

#Print("\nTreeFromListOfEdges(L);\n");

###

RootedTreeFromListOfEdges:= function(L)

local T, v;

T := TreeFromListOfEdges(L);

v := T.order;

return rec(graph:=T, colourClasses:=[[1],[2..v]]);

end;

#Print("\nRootedTreeFromListOfEdges(L);\n");

###

ShowRootedTreesAndAutomorphismGroups := function(n)

local T, t, r, G;

T:=ListOfRootedTrees(n);

Print("\n");

for t in T do

r := RootedTreeFromListOfEdges(t);

Print(t,"\n");

14

G:=AutGroupGraph(r);

Print(G,"\n\n");

od;

end;

#Print("\nShowRootedTreesAndAutomorphismGroups(n);\n");

###

ContainsOdd := function(G)

local L;

L:=List(Elements(G),g->SignPerm(g));

return (-1 in L);

end;

#Print("\nContainsOdd(G);\n");

###

RootedTreesWOS := function(n)

local T, t, r, number, List;

List:=[];

number := 0;

Print("\n");

if n=1 then Print("[[]]\n\n"); return; fi;

T:=ListOfRootedTrees(n);

for t in T do

r := RootedTreeFromListOfEdges(t);

if not ContainsOdd(AutGroupGraph(r)) then

Add(List, t);

number := number + 1;

fi;

od;

Print("Number of trees: ");

Print(number) ;

Print("\n");

return List;

end;

IsNodeRoot := function(Edges, node)

local i;

if node = 1 then

return true ;

fi;

return false ;

15

end ;

NewListOfEdgesToDotNodes := function(Edges)

local NumberOfNodes, NodesString, Roots, NonRoots, i, rootCheck, vertex;

NumberOfNodes := Length(Unique(Flat(Edges)));

NodesString := "" ;

if NumberOfNodes = 1 then

return "1 [label=\"\" shape=circle fixedsize=true height=.1

style=filled fillcolor=black];" ;

fi ;

Roots := [] ;

NonRoots := [] ;

for i in [1..(NumberOfNodes)] do

if IsNodeRoot(Edges, i) then

Add(Roots, i) ;

else

Add(NonRoots, i) ;

fi ;

od ;

for i in [1..(Length(Roots)-1)] do

vertex := Roots[i];

Append(NodesString,String(vertex));

Append(NodesString,", ");

od ;

Append(NodesString,String(Roots[Length(Roots)]));

Append(NodesString," [label=\"\" shape=circle fixedsize=true

height=.1 style=filled fillcolor=black];\n");

for i in [1..(Length(NonRoots)-1)] do

vertex := NonRoots[i];

Append(NodesString,String(vertex));

Append(NodesString,", ");

od ;

Append(NodesString,String(NonRoots[Length(NonRoots)]));

Append(NodesString," [label=\"\" shape=circle fixedsize=true height=.1];\n");

return NodesString ;

16

end;

ListOfEdgesToDotEdges := function(E)

local EdgesString, e;

EdgesString := "";

for e in E do

Append(EdgesString, String(e[1]));

Append(EdgesString, " -- ");

Append(EdgesString, String(e[2]));

Append(EdgesString, ";\n");

od;

return EdgesString;

end;

ListOfEdgesToDotGraph := function(E)

local BeginGraph, EndGraph, GraphString;

BeginGraph := "graph {\n";

EndGraph := "}\n";

GraphString := "";

Append(GraphString,BeginGraph);

Append(GraphString,NewListOfEdgesToDotNodes(E));

Append(GraphString,ListOfEdgesToDotEdges(E));

Append(GraphString,EndGraph);

return GraphString;

end;

FileStringBase := "<your_desktop_path>/graph";

NewListOfEdgesToDotFile := function(E, n)

local FileStringDot;

FileStringDot:="";

Append(FileStringDot,FileStringBase);

Append(FileStringDot,"_");

Append(FileStringDot,String(n));

Append(FileStringDot,".dot");

PrintTo(FileStringDot,ListOfEdgesToDotGraph(E));

end;

NewListOfEdgesToPdfFile := function(E, n)

local FileStringDot, FileStringPdf, CommandString;

NewListOfEdgesToDotFile(E, n);

FileStringDot:="";

Append(FileStringDot,FileStringBase);

17

Append(FileStringDot,"_");

Append(FileStringDot,String(n));

Append(FileStringDot,".dot");

FileStringPdf:="";

Append(FileStringPdf,FileStringBase);

Append(FileStringPdf,"_");

Append(FileStringPdf,String(n));

Append(FileStringPdf,".pdf");

CommandString:="dot -Tpdf ";

Append(CommandString,FileStringDot);

Append(CommandString," -o ");

Append(CommandString,FileStringPdf);

Exec(CommandString);

end;

#Print("\nNewListOfEdgesToPdfFile (Edges,ForestNumber) \nProduces the picture of the

#forest represented by its list of edges and given the number it has in the list of all

#the forests.");

The Trees function takes n and produces the trees with n edges

#that have no symmetries and produces the pictures of these and

#saves them to the Desktop.

Trees := function(n)

local numberoftrees, i, m, trees ;

m := n + 1;

trees := RootedTreesWOS(m) ; #RootedTreesWOS returns a list of the trees

numberoftrees := Length(trees);

for i in [1..numberoftrees] do

NewListOfEdgesToPdfFile(trees[i],i);

od ;

end ;

Print("\"Trees(n);\" produces the number of trees with n edges

and pdf and dot files of these trees.");

18

B.2 Forests

Take the trees of 2*n edges.

#Choose all trees where the root has n children,

#that is it has n vertices in the second position.

#Cut off the root, that is make

#all vertices in the second position roots,

#and give all other vertices their

#current number in the sequence minus 1.

#Each tree will become a forest of n edges

#and the trees of 2*n edges will give all forests of n edges.

#Compute the automorphism groups of each of these forests

#and exclude any that have odd symmetries.

#We are now left with all forests without

#odd symmetries of n edges.

LoadPackage("GRAPE") ; # Need this for functions later

The BeyerHedetniemi function takes a tree as argument and

returns the next tree, from the first one which is [1,2,3?n]

to the last one which is [1,2,2?2].

It does this one at the time.

BeyerHedetniemi := function (L)

local S, T, p, q, i;

S := L;

p := Maximum(PositionsProperty(L, l -> l>2));

T := List([1..p], x->L[x]);

q := Maximum(Positions(T, L[p]-1));

for i in [1..Length(L)] do

if i>=p then

S[i]:=S[i-(p-q)];

fi;

od;

return S;

end;

The MakeForest function takes a tree as argument and

Takes away its root and gives all other vertices a lower

position in the sequence.

MakeForest := function(L)

local F, i ;

F := [] ;

19

for i in [1..Length(L)] do

if not L[i] = 1 then

Add(F,(L[i]-1)) ;

fi ;

od ;

return F ;

end ;

The SequenceToEdges function takes a tree or a forest as

argument and produces the list of edges in the tree/forest.

SequenceToEdges := function(L)

local T, i, j;

T:=[];

for i in [1..Length(L)-1] do

j := i+1;

while j<=Length(L) and L[i]<L[j] do

if L[j] = L[i]+1 then

Add(T,[i,j]);

fi;

j := j+1;

od;

od;

return(T);

end;

The ForestFromEdges function takes a list of edges as argument

and returns a forest in the grape format.

ForestFromEdges := function(Edges)

local vertices, Forest, edge ;

vertices := Maximum(Flat(Edges)) ; # vertices

Forest := NullGraph(Group(()), vertices) ;

for edge in Edges do

AddEdgeOrbit(Forest, edge) ;

od ;

return Forest;

end ;

The isRoot function takes a forest and a vertex as argument

and checks if the vertex is a root in the forest.

20

isRoot := function(Forest, vertex)

local i ;

if vertex = 1 then

return true ;

fi ;

for i in [1..(vertex-1)] do

if IsEdge(Forest,[i,vertex]) then

return false ;

fi ;

od ;

return true ;

end ;

The RootedForestFromEdges function takes a list of edges as argument

and returns a rooted forest in the grape format.

RootedForestFromEdges := function(Edges)

local Forest, vertices, vertex, rootCheck, Roots, NonRoots;

Forest := ForestFromEdges(Edges) ;

vertices := Forest.order ; # number of vertices

Roots := [] ;

NonRoots := [] ;

for vertex in [1..vertices] do

rootCheck := isRoot(Forest,vertex) ;

if rootCheck then

Add(Roots,vertex) ;

else

Add(NonRoots, vertex) ;

fi ;

od ;

return rec(graph := Forest, colourClasses := [Roots, NonRoots]) ;

end ;

PermutationsOfEdges := function(RootedForest, Edges)

local PermsofVertices, PermsofEdges, perm, permedEdges, EdgesofForest ;

PermsofVertices := List(Elements(AutGroupGraph(RootedForest))) ;

PermsofEdges := [] ;

for perm in PermsofVertices do

permedEdges := OnTuplesTuples(Edges,perm) ;

Add(PermsofEdges,PermListList(Edges,permedEdges)) ;

od ;

21

return PermsofEdges ;

returns a list of the permutations of the edges of the forest.

end ;

The HasOddSymmetries function takes a list of edges as input and returns

whether or not the forest has any odd symmetries.

HasOddSymmetries := function(Forest)

local RootedForest, Edges, SignOfPerms ;

Edges := SequenceToEdges(Forest) ;

Make a forest from the list of edges

RootedForest := RootedForestFromEdges(Edges) ;

Lists the sign of each permutation of the rooted forest:

SignOfPerms := List(PermutationsOfEdges(RootedForest, Edges), x->SignPerm(x)) ;

return -1 in SignOfPerms ;

end ;

The PrintForest function takes a forest as argument and

prints the sequence and the list of edges of the forest:

PrintForest := function(forest)

local edges ;

Print("The corresponding forest:\n",forest,"\n") ;

Print(SequenceToEdges(forest),"\n\n") ;

end ;

The PrintTree function takes a tree as argument and prints

the sequence and the list of edges of the tree:

PrintTree := function(tree)

Print("The current tree:\n",tree,"\n") ;

Print(SequenceToEdges(tree),"\n\n") ;

end ;

22

The RootedForestsWOS function produces all rooted forests with n edges

that have NO ODD SYMMETRIES.

RootedForestsWOS := function(n)

local FirstTree, verticesOfTrees, Last, CurrentTree, countForests;

local CurrentForest, i, no, count, ListofForests, f ;

ListofForests := [] ;

no := n ;

verticesOfTrees := (2*n)+1 ;

countForests := 0 ;

FirstTree := List([1..(verticesOfTrees)],x->x) ;

Last := List([1..(verticesOfTrees)],x->2) ;

Last[1] := 1 ;

CurrentTree := FirstTree ;

while not CurrentTree = Last do

count := 0 ; # Resets the count of the

children of the root

for i in [1..Length(CurrentTree)] do

if CurrentTree[i] = 2 then

count := count + 1 ; # Counts the number of

children of the root

fi ;

od ;

if count = n then # If tree has n children of the

root, make a forest:

CurrentForest is the sequence of this forest.

CurrentForest := MakeForest(CurrentTree) ;

#Check if forest has any odd symmetries:

if not HasOddSymmetries(CurrentForest) then

This forest has no odd symmetries

Add forest to a list

countForests := countForests + 1 ;

23

#PrintTree(CurrentTree) ;

Add(ListofForests, SequenceToEdges(CurrentForest));

fi ;

fi ;

You are finished with making a forest (and printing it/adding it

if it is appropriate), now create the next tree to do it all again.

CurrentTree := BeyerHedetniemi (CurrentTree) ;

od ;

Print("\nThe number of Forests without odd symmetries with ",n," edges:

" ,countForests,"\n\n") ;

return ListofForests ;

end ;

IsNodeRoot := function(Edges, node)

local i;

if node = 1 then

return true ;

fi;

for i in [1..(node-1)] do

if ([i,node] in Edges) then

return false ;

fi ;

od ;

return true ;

end ;

NewListOfEdgesToDotNodes := function(Edges)

local NumberOfNodes, NodesString, Roots, NonRoots, i, rootCheck, vertex;

NumberOfNodes := Length(Unique(Flat(Edges)));

NodesString := "" ;

if NumberOfNodes = 1 then

return "1 [label=\"\" shape=circle fixedsize=true

height=.1 style=filled fillcolor=black];" ;

fi ;

24

Roots := [] ;

NonRoots := [] ;

for i in [1..(NumberOfNodes)] do

if IsNodeRoot(Edges, i) then

Add(Roots, i) ;

else

Add(NonRoots, i) ;

fi ;

od ;

for i in [1..(Length(Roots)-1)] do

vertex := Roots[i];

Append(NodesString,String(vertex));

Append(NodesString,", ");

od ;

Append(NodesString,String(Roots[Length(Roots)]));

Append(NodesString," [label=\"\" shape=circle fixedsize=true

height=.1 style=filled fillcolor=black];\n");

for i in [1..(Length(NonRoots)-1)] do

vertex := NonRoots[i];

Append(NodesString,String(vertex));

Append(NodesString,", ");

od ;

Append(NodesString,String(NonRoots[Length(NonRoots)]));

Append(NodesString," [label=\"\" shape=circle fixedsize=true height=.1];\n");

return NodesString ;

end;

ListOfEdgesToDotEdges := function(E)

local EdgesString, e;

EdgesString := "";

for e in E do

Append(EdgesString, String(e[1]));

Append(EdgesString, " -- ");

Append(EdgesString, String(e[2]));

Append(EdgesString, ";\n");

od;

return EdgesString;

25

end;

ListOfEdgesToDotGraph := function(E)

local BeginGraph, EndGraph, GraphString;

BeginGraph := "graph {\n";

EndGraph := "}\n";

GraphString := "";

Append(GraphString,BeginGraph);

Append(GraphString,NewListOfEdgesToDotNodes(E));

Append(GraphString,ListOfEdgesToDotEdges(E));

Append(GraphString,EndGraph);

return GraphString;

end;

note that the filestringbase contains a hardcoded path to your desired location

e.g. your desktop.

FileStringBase := "<your desktop path>/graph";

NewListOfEdgesToDotFile := function(E, n)

local FileStringDot;

FileStringDot:="";

Append(FileStringDot,FileStringBase);

Append(FileStringDot,"_");

Append(FileStringDot,String(n));

Append(FileStringDot,".dot");

PrintTo(FileStringDot,ListOfEdgesToDotGraph(E));

end;

NewListOfEdgesToPdfFile := function(E, n)

local FileStringDot, FileStringPdf, CommandString;

NewListOfEdgesToDotFile(E, n);

FileStringDot:="";

Append(FileStringDot,FileStringBase);

Append(FileStringDot,"_");

Append(FileStringDot,String(n));

Append(FileStringDot,".dot");

FileStringPdf:="";

Append(FileStringPdf,FileStringBase);

Append(FileStringPdf,"_");

Append(FileStringPdf,String(n));

Append(FileStringPdf,".pdf");

CommandString:="dot -Tpdf ";

Append(CommandString,FileStringDot);

26

Append(CommandString," -o ");

Append(CommandString,FileStringPdf);

Exec(CommandString);

end;

#Print("\n NewListOfEdgesToPdfFile (Edges,ForestNumber) \n

Produces the picture of the #forest represented by its list of edges

and given the number it has in the list of all #the forests.");

The Forests function takes n and produces the forests with n edges

that have no symmetries and produces the pictures of these

and saves them to the Desktop (or your chosed location).

Forests := function(n)

local Edges, numberofforests, i ;

Edges := RootedForestsWOS(n) ; #RootedForestsWOS returns a list of the forests

numberofforests := Length(Edges);

for i in [1..numberofforests] do

NewListOfEdgesToPdfFile(Edges[i],i);

od ;

end ;

Print("\"Forests(n);\" produces the number of forests with n edges

and pdf and dot files with these forests.");

References

[GAP] The GAP Group. GAP – Groups, Algorithms, and Programming.
www.gap-system.org

[OEIS] The On-Line Encyclopedia of Integer Sequences, Published electroni-
cally at https://oeis.org, https://bit.ly/2FbWAmw, Retrieved: 2018,
Sequence A045648

[Wil] J. Wilson. Private communication. February 6th, 2018.

[BH80] Beyer, T. and Hedetniemi, S.M., 1980. Constant time generation of
rooted trees. SIAM Journal on Computing, 9(4), pp.706-712.

[Lun75] Lunnon, W. F. Counting multidimensional polyominoes. Comput. J.
18 (1975) 366–367.

27

http://www.gap-system.org

