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Symmetries are everywhere, and mathematicians study them using the
algebraic theory of groups. Abstract mathematical groups, in turn, can
be studied by representing their elements as linear transformations on
complex vector spaces in a way that respects multiplication. This is
the basic idea of representation theory.

The representations of a finite group G can be organized into the repre-
sentation ring R(G) of that group. Each representation has a character
that is just the function G — C that associates to a group element the
trace of the corresponding matrix. In this way the representation ring
and the character ring of a group are isomorphic, and we can inter-
change them as we please. Typically, working with the character ring
is better for calculations, whereas the representation ring fits better
into conceptual frameworks.

The representation ring of a group is a weak invariant of that group:
There are many non-isomorphic groups that have isomorphic represen-
tion rings. In a sense the smallest example is given by the dihedral

group
D = (s,d|s* (sd)? d")

of order 8 and the quaternion group
Q = {1, i, 4j, £k}

of the same order. The character tables

Dle] &? d| s| sd
Ql1]-1 il j| k
x1 |1 1 1 1 1
xe | 1 1 1/-11]-1
x3 |1 11-1|-1 1
x4 |1 1]-1 1]-1
X512 —-2 0] 0] O

of the two groups are identical up to renaming of the conjugacy classes.

Hence, the character rings of the two groups are isomorphic. Both rings
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are isomorphic to the ring
(*) Z[x>yaz]/($2:y2:1>$22?ﬂ:2’722:1+$+y+$y),

as a direct inspection shows.

This situation prompts the problem of finding refinements of the rep-
resentation ring that give stronger invariants of groups. We will first
describe one standard way to do this, using Adams operations, and
then propose a new approach: united representation rings. Finally,
we will briefly discuss how to understand the relation between the two
approaches.

ADAMS OPERATIONS

Let G be a finite group, and k be an integer. The function
U*: R(G) — R(G)
X = Uy

with (U*x)(g9) = x(g¢*) for all g in G is the k-th Adams operation
on R(G). Tt is not immediate (but true) that ¥* lies in R(G) again, but
it clearly is a ring homomorphism. For instance, we see that U! = id is
the identity map, and ¥°(y) = dim(Y) is given by the dimension. Less
obviously, the ring homomorphism ¥~! is conjugation.

We are mostly interested in the second Adams operation ¥2. On groups
of odd order the map g +— g2 is a bijection, and consequently ¥? is easy
to describe on these groups: It permutes the irreducible representation,
and it acts on a general character by transforming the values according
to a Galois automorphism. For that reason, one cannot expect to learn
much about such groups from ¥2, and we turn our attention towards
the other extreme: 2-groups, that is groups whose order is a power of 2.

AN EXAMPLE

We now want to show that one can distinguish D and @Q by looking
at their representation rings together with ¥° and ¥2. In other words,
we want to show that there exists no ring isomorphism that commutes
with both W% and 2. To prove it, we assume that there exists a ring
isomorphism f: R(Q) — R(D) as described above, and will show that
this leads to a contradiction.
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From the character table we can see that all the one-dimensional char-
acters square to 1. It is easy to check that there are only eight elements
in the ring (x) that square to 1, namely the obvious ones: £1, +x, +vy,
and +zy.

We assume that f commutes with Y and this implies that f sends
characters in R(Q) to characters in R(D) of the same dimension. As
a consequence of this and f(1) =1, the homomorphism f induces a
bijection

{7q,¥q: zqyq} = {7p,Yp, TpYn},
where here and in the following we denote the set of irreducible char-
acters in R(D) by {1, zp, yp, zpyp, 2p }, and similarly for Q.

We will now look at consequences of the commutativity of f and U2,
in particular of its implication f¥?(2q) = W2f(2q).

On the one hand, we have
\If2(ZQ) = —1+4+2xq + yq + TqQUq,

so that the left hand side can be rewritten as

f¥%(2q) = f(=1+ zq + yq + 2quq)
= —f(1) + f(xq) + fyq) + f(zquq)

Using the action on the 1-dimensional characters established above, we
end up with

f‘I’z(zQ) =—1+xp +yp + TpYp.

On the other hand, we can certainly express W2 f(zq) as a linear com-
bination of the irreducible representations in R(D) with integer coeffi-
cients, say

U2 f(2q) = al + bxp + cyp + dxpyp + ezp.

Since f commutes with ¥ we have (f(zq))(e) = 2. Using that d is
the only element in D that does not square to e, we see that

U(f(zq))(g) =2 for g # d.
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Evaluating this expression for each element in D, we get the matrix
equation

1 1 1 1 2| |a 2
1 1 1 1 -2 b 2
11 -1 -1 0 |e| = [(92f(zq))(@)
1 -1 -1 1 0 |d 2
1 -1 1 -1 0 e 2

Solving this system of linear equations allows us to deduce

U2 f(2q) = (b+2)1 + bap — byp — brpyp.

Combining what we have learnt about the coefficients of f¥?(zq)
and U?f(zq), we see that that they cannot be equal. We can con-
clude that there exists no such f.

We have thus found a way to use the representation ring together with
the Adams operations ¥° and ¥? to distinguish between the groups D
and Q. However, this was rather hard work and involved ad hoc argu-
ments. We would like something that is easier and more systematic.

There is another fact that suggests that Adams operations are not the
end of the story: It is known that the representation ring together with
even all its Adams operations is not strong enough to distinguish all
finite groups: Dade, in response to a question of Brauer, has shown
that there are two groups of exponent 5 and order 5" = 78125 that
cannot be distinguished in this way.

AN IDEA FROM TOPOLOGY

In order to produce a different refinement of the representation ring of
a finite group, we let ourselves be inspired by topology. Every repre-
sentation V' of a group G gives rise to a vector bundle EG x4 V' over
the classifying space BG of the group GG. This association extends to
a homomorphism

R(G) — K(BG)

from the representation ring of the group G to the K-theory K(BG)
of the classifying space BG. Atiyah has shown that this is almost an
isomorphism: It is so after completion at the ideal of virtual represen-
tations of virtual dimension 0.
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A while later, Bousfield introduced a refinement, ‘united” K-theory,
into algebraic topology. This theory unites (complex) K-theory, real K-
theory, and self-conjugate K-theory. The latter, less well-known than
the two former, was a new (in terms of those days) cohomology the-
ory introduced in the (independent) theses of Anderson and Green.
Anderson also studied the united K-theory of classifying spaces.

Bousfield’s ‘united” K-theory is the background for this project. Our
aim has been to define ‘united representation rings’ as a representation
theoretical invariant of finite groups.

UNITED REPRESENTATION RINGS

A basis for the representation ring R(G), as an abelian group, is given
by the set Irr(G) of irreducible characters of G. In fact, this basis is
orthogonal with respect to the standard inner product

1 _
(a]p) = @zg:a(g)ﬁ(g)-

The number |Irr(G)| of basis elements is the number of conjugacy
classes of elements in G.

The representations of any group come in three different types: real,
complex, and quaternionic. Let Irr¢(G), Irrg(G) and Irry(G) denote
the subsets of Irr(G) consisting of complex, real and quaternionic rep-
resentations, respectively. The characters in Irrg(G) and Irrg(G) are
real valued, while the characters in Irre(G) are genuinely complex val-
ued. Therefore, the elements of Irrg (G) and Irryg(G) are invariant under
conjugation, but the map x + Y is a free involution on Irr¢(G). In
particular, this set has an even number of elements, and the set

Sumc(G) = {x +X|x € Irrc(G) }

has half the number of elements.

Let RSC(G) denote the subring of R(G) consisting of representations
with real valued characters. In other words

RSC(G) = {x € R(G) [ x(9) = x(g) for all g € G}.

A basis for the subring RSC(G), as an abelian group, is given by the dis-
joint union Sumc(G) U Trrg(G) UTrrg(G). Because ¥ is conjugation,
we see that the Adams operation W' on a representation ring R(G)
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determines the subring RSC(G) of self-conjugate virtual representa-
tions.

Let RO(G) denote the subring of RSC(G) consisting of all real rep-
resentations. If y is a character of GG, then the character x + X is
obviously self-conjugate, but it turns out that it is even real. In par-
ticular, if y has been self-conjugate in the first place, then the char-
acter 2y is real. It follows that RSC(G)/RO(G) is an elementary
abelian 2-group. A basis for RO(G) should be given by the disjoint
union Sumc(G) U Irrg(G) U 2ty (G).

We are now able to define what we mean by ‘united representation
rings’.
Definition. Let G be a finite group. The chain

RO(G) € RSC(G) € R(G)

of subrings of the representation ring will be referred to as the united
representation ring of the finite group G.

We will say that two groups G and H have isomorphic united rep-
resentation rings if there exists an isomorphism R(G) — R(H) that
maps RSC(G) isomorphically to RSC(H) and RO(G) isomorphically
to RO(H). Formally, this is clearly stronger than having isomorphic
representation rings, and we will now investigate how it turns out in
practice.

THE EXAMPLE REVISITED

If a group G has odd order, then it is easy to see, for instance by means
of the Frobenius—Schur indicator discussed below, that the trivial rep-
resentation is the only irreducible representation that is real. All other
irreducible representations are complex, so that there are no irreducible
representations that are quaternionic. For that reason we will consider
only 2-groups from now on.

To see that the united representation ring is a truly stronger invariant
of finite groups than the mere representation ring, we will look at the
united representation rings of D and Q. Recall that these groups could
not be distinguished using their ordinary representation rings. Since
all the values in the character tables are real, none of the two groups
have irreducible representations of complex type. We also see that
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all the 1-dimensional irreducible representations of both groups are
real. However, the 2-dimensional irreducible representation of D is
real, while the corresponding representation of Q) is quaternionic. This
implies that we have

RO(D) = RSC(D) = R(D),

while
RO(Q) # RSC(Q) = R(Q).

Hence, the two groups D and QQ do not have isomorphic united repre-
sentation rings, and one can use this structure to distinguish between
the two groups. It is fair to say that this kind of argument is much
easier than the one involving the second Adams operation above.

As we saw in the preceding paragraph, the united representation ring
is a stronger invariant of a group than the ordinary representation ring.
Thus, it is interesting to discuss how much stronger the united repre-
sentation ring is. Can we find examples of non-isomorphic groups that
cannot be distinguished by looking at their united representation rings?
The answer to this question is yes, and the Hall-Senior groups I'sgas
and I'ygas of order 64 serve as an example.

THE FROBENIUS—SCHUR INDICATOR

One may wonder if, in analogy with the relation between ¢~! on R(G)
and the subring RSC(G), there can be a similar relation between the
second Adams operation and the united representation ring. An indi-
cation of a connection between the two is given by a formula due to
Frobenius—Schur: If x is any class function on G, then the number

FS(x) = (1] ¥*(x))
is called the Frobenius-Schur indicator of x, and for an irreducible
character y we have
+1 if x is real,
FS(x) = 0 if x is complex,
—1 if x is quaternionic.
To turn this observation into a precise statement relating the the united

representation ring and the second Adams operation, further investi-
gation is needed.



