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Abstract

We use a Markov chain prior Bayesian model to do lithology and fluid prediction
from amplitude variations versus offset seismic data. We consider roughly the same
model that is used in Larsen et al. (2006) which again is strongly influenced by the
seismic inversion model found for example in Buland et al. (2003). We simulate from
the resulting posterior distribution using a combination of the Metropolis—Hastings
(MH) algorithm (Hastings, 1970) and the Gibbs sampler (Liu, 2001). We use the
forward-backward algorithm (Liu, 2001) within the Metropolis—Hastings algorithm
to update the elastic parameters and the lithology and fluid classes simultaneously.
The result is an algorithm with very good convergence and mixing properties.



1 Introduction

Lithology and fluid prediction (LFP) from seismic data is a hard problem, actually an
ill-posed inverse problem. In a Bayesian framework we combine available prior knowledge
with measured data. This makes stable and reliable solutions possible. We also get the
uncertainty of our solutions. Everything is summed up in the posterior distribution. The
focus in this presentation is how to simulate from the posterior distribution.

We base our inversion on amplitude variations versus offset seismic data (AVO) sim-
ilarly to Buland et al. (2003) and Larsen et al. (2006). We focus on predicting the
Lithology and fluid classes (LF) along a vertical earth profile. The LF classes can for
example be gas-, oil- or brine-saturated sandstone or shale. We consider roughly the
same model that is used in Larsen et al. (2006) which again is strongly influenced by the
seismic inversion model found for example in Buland et al. (2003).

2 Notation

Let x = (z1, 22, ...,xy,) be LF classes for n positions along a vertical profile. We have in
each position k possible LF classes, i.e. z; € {1,2,...,k} for i = 1,...,n. Further, y €
R™*3 are elastic parameters, where y; = (yi,1, Yi 2, Yi,3) represent the natural logarithm of
P-wave velocity, S-wave velocity and density, respectively, at the location i € {1,...,n}.
Let r € R"*™ and z € R"*"™ be reflection coefficients and AVO seismic data for the n
positions in ng observation angles, respectively. We further have that r; and z; denote
the reflection coefficients and seismic data at position i € {1,...,n} respectively. We also
let 77 and 27 be the reflection coefficients and seismic data for angle 05, j€{1,...,n9}
for all the n positions.

3 The Bayesian model

We model the prior for = by a Markov chain, n(z) = 7w(x1)w(z2|z1) - 7(TH|TH-1).
Further we assume

n
Ylz ~ Hﬁ(yim),
i=1
where
m(yilwi) = Na(y]'s (i), B(x)).

Here, N,(x; i, 2) denotes the density of a p-dimensional multi Gaussian distribution with
expectation p and covariance matrix . Thus, we assume that the elastic parameters
for the different positions are conditionally independent given x. Further, we get the ng

reflection coefficients
T T
riT —A (yz+1 5 yz—l)

for i = {1,2,...,n}. The matrix A € R™>3 refer to the angle dependent linear weak
contrast approximations (Buland et al., 2003).



To get the data z we suppose that there are two independent noise terms added to
the reflection coefficients, the first part of the noise being smooth and of equal waveform
as the signal, and the second part being white noise. i.e.

2 =Wy r! + 01W9je]i + 09€), = W, (17 + o1€)) + 096l (1)

where e{,eg ~ Nn(e;0,1), Wy, € R™" is a wavelet matrix for the angle ¢; for j =
1,...,ng. Thus,
20~ Ny (27; ngrJ,U%ngWéj + o31).

We assume that the variance o3 is small compared to 0, so most of the noise in the data

are of the same wave-form as the wavelet. This is also used in Buland et al. (2003) and
Larsen et al. (2006). We are now mainly interested in simulating x from the resulting
posterior distribution.

4 Simulation algorithm

We are now interested in extracting information from the posterior distribution presented
in the previous section. We choose to do this by generating realizations from this distri-
bution. We use Markov chain Monte Carlo (MCMC) simulation and more specifically a
combination of the Metropolis-Hastings (MH) algorithm (Hastings, 1970) and the Gibbs
sampler (Liu, 2001).

A natural way to try to simulate from the model is to use the Gibbs sampler where
we alternate between simulating y from 7(y|z, z) being multi normal and simulating x
from 7(x|y,z). We are able to simulate effectively from 7 (z|y, z) = 7(x|y) because of
the conditional independence structure in the distribution using the forward-backward
algorithm (Liu, 2001). Unfortunately, such an algorithm performs poorly because x and
y are strongly correlated. We therefore consider another layer, u € R"*™  in the model
for simulation purposes. We use the same notation for u that we used for r and 2. We
define w/ = 17 + o€}, so that we have from (1) that 2/ = Wu/ + o2e2. The posterior
distribution of interest is thereby

m(x,y,ulz) o< T(@,y,u, 2) = ()7 (yle)m (uly)m(z]u), (2)
where calculations give that

n

n T T
m(uly) = Hﬂ'(uiwifbyﬂrl) = HNn9 (W;A <Z+1211> ,0’%1)
i=1

i=1
and
ng
m(zlu) = H Ny (275 W, u? o3l).
j=1

We simulate from (2) by using two update steps in each iteration of the algorithm.
More specifically, in the first step we generate new values for (y,u) from the full con-
ditional Gaussian distribution 7(y,u|z,2) o 7(x,y,u|z), so this is a Gibbs step. The
second step is a MH step where we propose new values for (x,y) and accept or reject
this proposal according to the MH acceptance probability. The proposal distribution is
close to the full conditional 7(x,y|u, z) = w(z,y|lu) x w(x,y,u), see the next section for
more details.



The idea for introducing u is that (posterior) correlation between u and z is much
smaller than between y and x. Thereby the MH algorithm including v will have much
better convergence and mixing properties.

4.1 Details the proposal for (x,y)

It is not straight forward to generate good proposals for the distribution m(z,y|u).
Note, however, that because of the independence structure in 7 (z, y|u, z), we may write
m(z,ylu) oc hi(z1,y1, 22, Y2, Y3, u) - ha(22, Y2, 23,y3,u) - ... - Ay 1(Tn—1,Yn—1, Tn, Yn, u) -
hn (%, Yn,u) for some functions h;(-,...,-),i = 1,...,n — 1. This is in fact a chain
structured distribution and a method similar to the forward-backward algorithm (Liu,
2001) can be constructed. We are then in principle able to calculate analytically all the
conditional distributions in

m(z,ylu) =
ﬂ-(yl"rla 2,Y2,Ys, U)W(‘T1|x27 Y2,Y3, U)Tr(y2|$27 r3,Y3,Y4, u)ﬂ-(xQ‘mi% Y3, Ya, 'U,) e

cee 7"'(yn—l ‘wn—h Tn, Yn, U)T"(fbn—l |xn> Yn, U)ﬂ'<yn|xna U)ﬂ'(xn’U)

The 7(y1|x1, x2, Y2, Y3, u) becomes a mixture of k& normal densities, 7(ya|z2, z3y3, Y4, u)
a mixture of k2 normal densities, and so on. Ultimately, 7 (|2, u) becomes a mixture
of k™ normal densities. Of course, we are not able to handle that many normal terms
computationally. Our solution is to ignore the less important terms, i.e. terms where the
constant in front of the normal density is small. Doing this trick result in a distribution
that we are able to generate samples from fairly effectively for dimensions up to n =
100 — 150 on a modern computer. >From this distribution we propose new values
for x and u, which in turn is accepted or rejected according to the corresponding MH
acceptance probability,

5 Simulation example

We consider n = 100, £ = 4 and ng = 5. We use a wavelet of length approximately 60
positions and a signal-to-noise ratio of 1.2. For the remaining model parameters we adopt
values similar to Larsen et al. (2006). We test the LF prediction method by first starting
with some profile x; generated from the Markov chain prior and generating synthetic
data z from zs using the model. Secondly, we generate samples from the posterior
distribution using the simulation method presented above. Simulations show that the
algorithm works very well in terms of convergence and mixing properties. In Figure 1 we
have results from two simulations, one in each row. In the column to the left we have the
simulated “true” x4, the next three columns show three (independent) posterior samples
of z, and in the plots to the right we show estimated marginal posterior probabilities for
the different LF classes at each position. In the whole figure, the red, green, blue and
black colours refer to gas-, oil-, brine-saturated sandstone and shale, respectively.
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Figure 1: Results from two simulations, where the first row sum up the first simulation
and the second row the second simulation. In the four columns to the left we have x4
and three samples from the posterior distribution and in the plots to the right we have
estimated marginal posterior probabilities for the different LF classes at each position.
In the whole figure, red, green, blue and black colour refer to gas-, oil-, brine-saturated
sandstone and shale, respectively.

We see from the figure that the posterior distribution regain x, in a good manner
and also indicate the amount of uncertainty in the LF prediction.

6 Closing Remarks

We present an algorithm that simulates from the posterior distribution of a Markov chain
prior Bayesian model. Simulations show that the algorithm converges fast and have good
mixing properties. The realizations gives reliable and stable solutions to the problem.
Future work is to extend the method to cope with longer profiles.
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