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Summary

Time-Lapse Seismic data are frequently used in History Matching of reservoir production data. The
ensemble Kalman Filter (EnKF) is a method that conditions on observations as the appear. It
uses an n-member ensemble of representations of reservoir characteristics and conditions them on
production data. However, if the dimension of the production data is greater than the number
of ensemble members, rank problems may arise and the EnKF solution might break down. The
dimension of seismic data is vast and exceeds the number of ensemble members in realistic models.
We propose a hierarchical model, phrased in a Bayesian setting, to account for these problems. The
model incorporates prior information about the expected level and heterogeneity of the solution. The
hierarchical model is implemented on simple synthetic examples and they show promising results.
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Introduction

History Matching (HM) is done by conditioning a representation of the reservoir charac-
teristics on historical production data to forecast future reservoir behavior. The forecast
should include uncertainty, and due to the nonlinear nature of the reservoir fluid flow
models, this is done by repeated reservoir simulations. Traditionally HM is done by tun-
ing individual variables in the representation to minimize the difference between observed
production history and forecasted production. This approach does not account for or
quantify uncertainty and the conditioning is made on all available observations simulta-
neously. Hence an entirely new representation has to be matched when new observations
are available.

The Ensemble Kalman Filter (EnKF) was introduced in Evensen (1994) as a method
to condition sequentially on observations as they appear. The method uses an initial
ensemble of reservoir representations which are simulated forward in time. Each rep-
resentation is sequentially conditioned on observations. The covariance matrix between
representations and observations is estimated based on the ensemble at any time. How-
ever, if the number of representations in the ensemble is smaller than the number of
observations this matrix will be a low rank estimate of the true covariance matrix, and
there might be loss of information. Presently, high-dimensional time-lapse seismic data
must also be conditioned on, and hence the rank problem in EnKF appears crucial.
We propose a Hierarchical Ensemble Kalman Filter that ensures a full rank estimate of
the covariance matrix and hence avoids the information loss. Prior information on the
covariance matrix is used to enforce realistic solutions.

Model formulation

Consider the data assimilation state space equations

xi = Φ(xi−1) i =1, ...,m + 1 (1)
di = Hixi + εi i =1, ...,m (2)

where xi ∈ R
p are the state variables following a Markov process, Φ(.) is a known,

possibly non-linear, transfer function, di ∈ R
k are the observations, Hi ∈ R

k×p is a
matrix relating the observations to the state variables and εi ∈ R

k is the observation
error following some arbitrary pdf. In the HM setting xi are the reservoir characteristics
with very large p and Φ(xi) is the reservoir fluid flow simulator. The observations, di are
usually production history, but it may also be time-lapse seismic data, hence very large
k. The model is represented in the graph in Figure 1.
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Figure 1: A graph depicting the dependency structure in a state space model.

Assign a prior model to the initial state f(x0) and let the deterministic transfer
function be represented by the Dirac pdf f(xi+1|xi). The prior model for all times
considered up to time t = m + 1 is then

f(x0, ..., xm+1) = f(x0)
m+1∏
i=1

f(xi|xi−1). (3)
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Assume conditionally independent Gaussian likelihood models for the observations

[Di|xi] ∼ f(di|xi) = Nk(Hixi,Σo
i ) for i = 1, ...,m, (4)

where Nk(µ,Σ) denotes a k-variate normal distribution with expectation µ and covari-
ance matrix Σ, and Σo

i is the observation error covariance matrix. The prior and likeli-
hood models define the posterior model

f(x0, ..., xm+1|d1, ..., dm) = const× f(x0)f(xm+1|xm)
m∏

i=1

f(di|xi)f(xi|xi−1). (5)

The objective is to obtain the marginal posterior pdf for xm+1 conditioned on d1, ..., dm

as it provides a forecast. It can be defined from the above expressions:

f(xm+1|d1, ..., dm) =
∫

...

∫
f(x0, ..., xm+1|d1, ..., dm)dx0...dxm (6)

The forecast can be computed sequentially via the relations:

f(xi|d1, ..., di−1) =
∫

f(xi|xi−1)f(xi−1|d1, ..., di−1)dxi−1 (7)

f(xi|d1, ..., di) = const× f(di|xi)f(xi|d1, ..., di−1). (8)

In general the steps in expressions (7)-(8) are hard to determine, except for some special
cases discussed below.

Kalman Filter (KF) Consider the following constraints on the general data assimila-
tion problem. Let Φ(x) be a linear function in x and let f(x0) be Gaussian. In this case
the marginal posterior pdf in expression (6) will be Gaussian and analytically tractable.
The solutions are given by the KF approach, which determines the posterior mean and
covariance in a sequential manner and thereby fully specifies the distribution.

Ensemble Kalman Filter (EnKF) Consider the general case where Φ(x) is non-
linear. The EnKF uses an ensemble, e0 : {x0,1, ..., x0,n}, of n realizations sampled from
the prior distribution at time t = 0. The ensemble members are forecasted via expression
(1) and thus define an ensemble at time t = 1. The ensemble mean x̄1 and covariance
S1 are defined and the ensemble members are conditioned on the observations at time
t = 1 via the expression:

xc
1,j = x1,j + S1H

′
1(H1S1H

′
1 + Σo

1)
−1(d1 + εo

1,j −H1x1,j) j = 1, ..., n (9)

where εo
1,i is a random sample from N (0,Σo

1) added to ensure correct error structure.
This procedure is repeated sequentially in time t.

The EnKF solution can be expressed as a linear combination of the initial ensemble.
As a result, the EnKF solution is dependent on the rank of St, t = 1, ...,m. If the number
of ensemble members n is smaller than the number of observations k, the k × k matrix
HiSiH

′
i in expression (9) will not have full rank, and numerical problems arise. Recent

results show that the EnKF may provide reliable results if the inversion in expression
(9) is replaced by a pseudo-inversion, see Evensen (2004). Note however that estimation
uncertainty of the covariance matrix and numerical approximations are left unspecified.
If the number of observation k is far greater than the number of ensemble members n the
traditional EnKF might break down due to lack of information in the ensemble. This is
typically the situation when time-lapse seismic data with one observation in each grid
node of the reservoir representation is available. We propose a hierarchical model that
solves this problem.
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Hierarchical Ensemble Kalman Filter (HEnKF)

Consider the EnKF setting as defined above. Assume the forecast at time t = i fol-
lows a Gaussian distribution, f(xi|d1, ..., di−1) ∼ Np(µi,Σi). Assign the following prior
distributions for the parameters µi and Σi:

[µi|Σi] ∼ Np(Φi(η), ξ × Σi), (10)

Σi ∼ W−1
p (Ψ, ν), (11)

where Φi(x) is the transfer function applied i times to x and W−1(Ψ, ν) is the inverse
Wishart distribution with p × p scale matrix Ψ and ν > p + 1 degrees of freedom. The
expectation of an inverse Wishart distributed variable is E{Σ} = Ψ

ν−p−1 . The model
parameters η, ξ, Ψ and ν can be specified such that they add information about the
expected level and heterogeneity of the solution. Moreover, uncertainty associated with
this information can be assigned. The model is represented in the graph in Figure 2.
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Figure 2: A graph depicting the dependency structure in a state space model.

At time t = i suppose we have an n-member ensemble ei : {xi,1, ..., xi,n} representing
a forecast from f(xi|d1, ..., di−1) with ensemble mean x̄i and covariance Si. Conditioning
on the ensemble defines the following posterior model:

[µi|ei,Σi] ∼ Np((1− α)Φi(η) + αx̄i, ξ(1− α)Σi) (12)

[Σi|ei] ∼ W−1
p (Ψi, ν + n), (13)

where α = nξ
1−nξ and Ψi = Ψ+(n−1)Si +( 1

n +ξ)(x̄i−Φi(η))′(x̄i−Φi(η)). A hierarchical
version of the conditioning in expression (9) uses a covariance estimate from the posterior
model:

Generate Σj ∼ f(Σi|ei) j = 1, ..., n

Update xc
i,j = xi,j + ΣjH

′
i[HiΣjH

′
i + Σo

i ]
−1(dt + εi,j −Hixi,j) j = 1, ..., n

All realizations from W−1
p (Ψi, ν + n) are full rank covariance matrices and as a result

both Σj and HiΣjHi will be real and of full rank. The uncertainty in the matrix estimate
is accounted for, and it decreases as the number of ensemble members n increases and
tends to the true covariance as n → ∞. The HEnKF is an extension of the EnKF in a
true Bayesian spirit.

Examples Consider two simple synthetic transfer functions, one linear and the other
non linear, where x is a vector of dimension p = 100. The linear function is Φ1(xi) = Axi

and the non-linear function is Φ2(xi) = Axi+arctan(xi), where A ∈ R100×100 is a banded
matrix where elements Aij = 1

3 if i ∈ [j − 1, j + 1] and zeros elsewhere. Synthetic data
at time t = 0 are generated from N100(0, σ2I100×100) and subjected to the transfer
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function, where σ2 = 10 for the linear model and σ2 = 1 for the non linear model. The
left most displays of Figure 3 show the synthetic data at time t=40. Observations, are
generated with Hi = I100×100 and error model N100(0, 30I100×100) at each time step.
Hence k = p = 100. Prior parameters are η = 0, ξ = 0.1 and ν = 102, and Ψ is an
exponential covariance matrix with correlation length 20 scaled such that the expected
marginal variance of the inverse Wishart distribution is 30. The middle displays show
the ensemble mean from EnKF and HEnKF with associated 95% marginal confidence
bounds based on an ensemble of size n = 8 << p = k = 100. The right most displays
show ensemble means from 10 reruns of the EnKF and HEnKF with different initial
ensembles. The middle displays show that HEnKF provides more stable solutions than
EnKF both when Φ(.) is linear and non-linear, and that forecast uncertainty is more
realistically assessed. The right most displays confirm that HEnKF provides more stable
results than EnKF.

Summary In situations when the number of observations is far greater than the num-
ber of ensemble members the EnKF might not give reliable results due to rank issues. We
have proposed the HEnKF model phrased in a consistent Bayesian setting, to account
for these problems. HEnKF provides encourageing result on two simple examples.
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Figure 3: Linear model (top row) and non-linear model (bottom row). Simulated truth
and observations (left), 10 realizations of EnKF and HEnKF (middle) and one realization
of EnKF and HEnKF within 95% marginal confidence bounds (right). KF solution for
the linear model and simulated truth for the non-linear model plotted for reference (blue).
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