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ABSTRACT

The Ensemble Kalman Filter (EnKF) is a Bayesian method for performing

automatic and sequential history matching. High computational demands

when performing reservoir fluid flow simulations often requires that an

upscaling of the reservoir has to be carried out. This approximation is

however known to introduce bias in production forecasts. The Scale-Corrected

Ensemble Kalman Filter (SCEnKF) is a method that tries to account for this,

which is an important feature when time-lapse seismic data is included, as

this appear on a much finer scale than fluid flow simulation permits. Here we

have tested the SCEnKF on a synthetic case study, where we have included

both 4-D seismic and production data.

INTRODUCTION

Evaluation and prediction of the properties of a petroleum reservoir, such
as permeability, hydrocarbon saturation and porosity, based on production
history, well-logs and seismic data, implies solving a complex, ill-posed and
non-linear inverse problem. The Ensemble Kalman Filter (EnKF) is a
sequential Bayesian solution to this problem, which has shown promising
results (Evensen, 2007).

Due to high computational demands when running fluid flow simulation on
a very fine scale grid it is often necessary to reduce the dimension of the
problem. This approximation however, is known to introduce bias, which
should be accounted for (Omre and Lødøen, 2004). An extension to the
EnKF, the Scale-Corrected EnKF (SCEnKF), was presented in (Lødøen
and Omre, 2005), where the bias of coarse scale fluid flow simulation was
corrected for. By including a so called calibration step, involving a small
number of fluid flow simulations on both fine and coarse scale, they were able
to correct for the loss in accuracy and precision when using an approximate
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fluid flow simulator. This feature is especially important when including
observations of 4-D seismic, as these usually appear on a much finer grid
than the coarse scale grid used for fluid flow simulation.

NOTATION AND MODEL FORMULATION

Throughout this paper, the notation x ∈ Rn×1, will be used to denote both
scalar, stochastic column vectors and realisations of dimension n, and xT

its transpose. Similarly, the notation Σ ∈ Rm×n, will denote matrices of
dimension m×n.

Consider a reservoir domain D ⊂R3, which has been discretised into a regular
lattice LD of dimension n. The reservoir state properties within LD at time
t will be denoted by rt = [κT ,φ T ,sT

t ,pT
t ]T ∈Rnr×1, where κ is log-permeability,

φ is porosity st is saturation and pt is pressure at time t. Reservoir production
properties at time t, such as gas-oil ratio (gor), bottom hole pressure (bhp)
and oil production rates (opr), will be denoted by qt ∈Rnq×1. For notational
convenience we will let xt = [rT

t ,qT
t ]T .

The state of the reservoir at time t, xt is connected to the state of the
reservoir at a previous time s through a possibly highly non-linear function
ω(•), referred to as the fluid flow simulator. That is, xt = ωt−s(xs). Hence, if
we consider evaluation of the reservoir at discrete timesteps tk, k ∈ {0, . . . ,N},
this implies that the state of the reservoir at each timestep appears as
a Markov process. The prior probability distribution function (pdf) for
the time-varying reservoir characteristics f (x0, . . . ,xN) can therefore be fully
specified through the prior pdf at the initial timestep f (x0), and ω(•). Here,
and throughout the rest of this paper, xk refers to the state of the reservoir
at timestep tk.

Observed production properties will be denoted by qo
k = qk +εqk , where εyk ∼

Gaussnq(0,Σεqk
), independent of qk ∀k. Here the notation y ∼ Gaussny(0,Σy)

means that y is a random vector following the multivariate Gaussian
probability distribution, having zero mean, and covariance matrix Σy
(Anderson, 2003).

Similarly we will denote seismic time-lapse AVO signals at timestep tk
by dk ∈ Rnd×1, and the observed seismic data by do

k = dk + εdk , where
εdk ∼Gaussnd (0,Σεd k) independent of dk, ∀k. Note that by assuming a linear
Gaussian model between seismic AVO data and the elastic properties m
(Buland and Omre, 2003), and further using the non-linear Gassmann’s
equations to connect m to the reservoir state properties (Bachrach, 2006;
Batzel and Wang, 1992), seismic AVO data will be connected to the reservoir
state properties through a non-linear function ψd(•). That is, dk = ψd(rk).

Note that for notational convenience we let xo
k = [doT

k ,qoT
k ]T , in spite that

either seismic or production can be missing data at certain timesteps.
Moreover, the above entails that in general we have a non-linear Gaussian
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likelihood model xo
k = ψx(xk)+ εxo

k
, where εxo

k
∼ Gaussnxo (0,Σεxo

k
).

Ensemble Kalman Filter

Bayesian inversion is well suited to solve the complex, ill-posed and
non-linear inverse problem of evaluating and predicting the reservoir
state, and production properties based on observed data. Due to the
Markov properties of the model, evaluation of the posterior pdf of interest
f (xk|xo

k , . . . ,x
o
0), k = 0, . . . ,N, can be done sequentially (Lødøen and Omre,

2005). However, due to the non-linear fluid simulator and likelihood model
connecting seismic AVO data to the reservoir state properties, such a model
is analytically intractable in a statistical sense.

The EnKF (Evensen, 2007) provides a solution to this problem by assuming
that xu

k ∼ f (xk|xo
k−1, . . . ,x

o
0), approximately follows a Gaussian distribution

with unknown mean µxk
and covariance matrix Σxk . Due to the Markov

properties of the model, realisations can therefore be generated sequentially
as xu

k = ω(xc
k−1), where xc

k ∼ f (xk|xo
k , . . . ,x

o
0), k = 0, . . . ,N. By using an

ensemble of ns realisations, xu(1)
k , . . . ,xu(ns)

k we can then estimate the mean
and covariance using the standard unbiased estimators

µ̂xk
=

1
ns

ns

∑
i=1

x(i)
k

Σ̂xk =
1

ns−1

ns

∑
i=1

(x(i)
k − µ̂xk

)(x(i)
k − µ̂xk

)T . (1)

If all likelihood models connecting observed data to the reservoir state
are linear Gaussian, that is, xo

k ∼ Gaussnxo (Dxk xk,Σεxk), for some matrix
Dxk ∈ Rnxo×nx , then the posterior model will also been Gaussian, and thus
analytically obtainable (Anderson, 2003). However, as the likelihood for
the seismic AVO data is non-linear another approximation has to be made
(Evensen, 2007).

Similarly as above, assume that x̃o(i)
k = ψx(x

u(i)
k ), i = 1, . . . ,ns, are realisations

from an approximate Gaussian pdf with unknown mean µxo
k

and covariance
Σxo

k
. Further let Σxxo

k
denote the covariance between xk and xo

k . Using
the standard unbiased estimators in Equation (1), the unknown covariance
matrices can then be estimated based on the realisations x̃o(i)

k and xu(i)
k .

Under the Gaussian assumptions of the EnKF, realisations from the posterior
pdf can therefore be generate sequentially for k = 1, . . . ,N as:

xu
k = ω(xc

k−1)

xc
k = xu

k + Σ̂xxo
k
(Σεxo

k
+ Σ̂xo

k
)−1(xo

k + εxo
k
− x̃o

k), (2)

where εxo
k
∼ Gaussnxo

k
(0,Σεxo

k
).
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Approximate Fluid Flow Simulation

Fluid flow simulation on a very fine scale grid is a computationally
demanding process, meaning that it could take weeks, or even months
to advance one single realisation from the current timestep to the next.
Approximations must therefore be made in order to use the fluid flow
simulator on a multiple set of realisations as required by the EnKF algorithm.
One solution is to reduce the dimension of the reservoir through the possibly
non-linear process known as upscaling (Farmer, 2002). That is x∗k = ν(xk)+
εx∗k , where εx∗k is a Gaussian variable reflecting the error introduced by
moving the reservoir from a fine scale to a coarse scale (Deutsch, 2002).
The dimensional reduction will make repeated simulation on a coarse scale
possible through the use of a faster fluid flow simulator ω∗(•).

Upscaling is however, known to introduce bias in the fluid flow simulation
(Omre and Lødøen, 2004), which should be accounted for. Moreover, as
seismic data often appears on a much finer grid than is computationally
feasible for fluid flow simulation, it is important also get good predictions of
the reservoir state on a fine scale.

The empirical statistical solution to these challenges is the Scale-Corrected
Ensemble Kalman Filter (SCEnKF) (Lødøen and Omre, 2005). The main
idea of this method to use two ensembles, where one is referred to as the
calibration ensemble, and the other referred to as the simulation ensemble.
The calibration ensemble contains nc realisations obtained using both the
fine and coarse fluid flow simulator, while the simulation ensemble contains
ns realisations obtained only using ω∗(•). Due to computational demands it
is thus assumed that nc << ns. Also note that updating the two ensembles
is done using the EnKF algorithm.

The EnKF assumption entails that outputs from the non-linear fluid
flow simulator, on both fine, and coarse follow approximate Gaussian
distributions with unknown mean and covariance. As in the EnKF updating
scheme, we can therefore find analytical expressions for the conditional
distribution of the fine scale reservoir state properties xk given the coarse
x∗k namely:

xu
k = µxk

+ Σ̂xx∗k Σ̂
−1
x∗k

(xu∗
k −µx∗k

)+ ε̃xk , (3)

where ε̃xk ∼ Gaussnx(0, Σ̂x|x∗k ), with

Σ̂x|x∗k = Σ̂xk − Σ̂xx∗k Σ̂x∗k Σ̂
T
xx∗k

. (4)

Here all unknown mean vectors and covariance matrices are estimated based
on the calibration ensemble (Lødøen and Omre, 2005). Note that in the
equations above, we have assumed that upscaling is a deterministic process,
meaning that x∗k = ν∗(xk). If the covariance structure of the error term in
the upscaling, εx∗k is known, this matrix should be added to the covariance
matrix Σx∗k as in Equation (2).
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SOLUTION TO RANK ISSUES

In reservoir applications the dimension of the reservoir state properties
are typically much larger than the number of ensemble members, both
in the calibration, and simulation ensembles. This implies that most of
the estimated covariance matrices will be rank deficient, which will have
indirect consequences for the success of the EnKF, and both direct and
indirect consequences for the success of the SCEnKF. The direct effect can
easily be seen by looking at Equations (3) and (4). Here we can see that
both expressions involve inverting the covariance matrix Σ̂x∗k , which will be
singular as long as nc−1 < nx∗ .

The indirect consequences can for instance be seen by looking at the EnKF
update scheme in Equation (2). Since

rank(Σ̂xxo
k
) = min{(ns−1),nx,nxo},

Σ̂xxo
k

will in most practical applications also be rank deficient. This may
influence the conditional realisation xc

k to such a degree that artifacts are
created (Skjervheim, Evensen, Aanonsen, Ruud and Johansen, 2005). An
empirical statistical solution to these issues is in statistical literature known
as Principal Component Analysis (PCA) (Anderson, 2003).

Consider realisations x(1), . . . ,x(ns) ∈ Rn×1 drawn independently from a
probability density function having mean µ and covariance Σx. The aim
of PCA is to explain the covariance structure of the data through a small
number of orthogonal linear combinations termed Principal Components
(PC) z( j) = [z( j)

1 , . . . ,z( j)
r ]T , where z( j)

i = bT
i x( j), i = 1, . . . ,r, j = 1, . . . ,ns, r ≤ n,

such that the variance of z(•)
i is maximised under the condition that bT

i bi =
1 ∀i. It can be shown (Anderson, 2003) that the ith sample PC is given as
zi, j = vT

i x j, where vi is the ith eigenvector of the Σ̂x defined in Equation (1).
Moreover, the estimated proportion of total variance explained by the kth
PC is given as

wk =
λ̂k

∑
r
i=1 λ̂i

, (5)

where λ̂k is the kth eigenvalue of Σ̂x and r = rank(Σ̂x).

Note that if we assume that x(i) ∼ Gaussn(µx,Σx), i = 1, . . . ,ns, then by
standard linear Gaussian theory z(i) ∼Gaussr(Vµ,Λ). Here V∈Rr×n contains
the r eigenvectors of Σ̂x, and Λ ∈ Rr×r is a diagonal matrix containing the r
eigenvalues. The rank issue can therefore be avoided by instead conditioning
z(•), which corresponds to the optimal linear predictor in the case when the
empirical covariance matrices are rank deficient. Working with PC will also
reduce the computational demands, since we only have to work with matrices
of low dimension. Note further that in the implementation of both the EnKF
and SCEnKF algorithms, the use of Singular Value Decomposition avoids
computation, and storage of potential very high dimensional covariance
matrices (Evensen, 2007).
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CASE STUDY

The synthetic case study is identical to the one used in (Hegstad and Omre,
2001), with the same reference model as used in (Lødøen and Omre, 2005).
The reference reservoir, which is inspired by the Troll field in the North
Sea offshore Norway, has a homogeneous three layered structure with high
permeable middle layer, as seen in Figure 1. The reservoir is initially fully
saturated with oil, and contains two horizontal production wells, and one
vertical gas injection well. The size of the reservoir is 104×104×102 feet3,
and it has been discretised into a n = 50×50×15 grid. The reference model
was run for 2100 days, using Eclipse100(2007.1) (GeoQuest, 2007) as the
fluid flow simulator ω(•). Reference pressure, gas saturation and production
qo

t was collected after 150, 300, 450, 600, 750, 900, 1050, 1 200, 1350, 1650
and 2100 days. Synthetic seismic data do

t was also generated after 300, 900
and 2100 days using the non-linear seismic forward function ψd(•). The
seismic model parameters considered were the same as the ones used in
(Sætrom, 2007). Upscaling of the reservoir was done such that permeability
was mapped by geometric averaging, while porosity, saturation and pressure
was mapped by arithmetic averaging, reducing the dimension of the reservoir
to n∗ = 10× 10× 15. Thus r∗k = Ark, where A ∈ Rnr∗×nr is a block diagonal
matrix where each entry is zero, or 1/25.

RESULTS

Two different case studies have been carried out, which we will refer to as
Case 1, and Case 2. Here we considered a calibration ensemble of size nc = 20,
and a simulation ensemble of size ns = 200.

Case 1

Realisations from f (x0|xo
0) were generated by adding Gaussian white noise

with high variance to the reference reservoir state properties. Figure 1 shows
the development of κ and φ for one of the downscaled simulation ensemble
members, after 0, 300, 900 and 2100 days of updating using the SCEnKF
conditioning on both seismic and production data. As we can see from this
figure, the ensemble member is drawn towards the reference case as more
data becomes available. The same effect is present in the other ensemble
members.

Finally we rerun the fine scale fluid flow simulator from the initial timestep,
using the updated static reservoir properties after 0, 300, 900 and 2100 days
of updating as input, without conditioning on any observations, and predict
for 3000 days. Figure 2 shows the opr and gor for one of the two production
wells. As we can see from this figure, the uncertainty in the initial predictions
is reduced as more data becomes available. Further we see that there is no
bias due to upscaling in the predictions.
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Figure 1: SCEnKF, Simulation Ensemble, Case 1: Vertical slice of log-permeability and
porosity for one ensemble member. The first row shows from left to right;
log-permeability after 0, 300, 900 and 2100 days of updating. The second row
shows the porosity at the selected days. The rightmost plots shows, from top
to bottom, reference log-permeability and porosity.
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Figure 2: SCEnKF, Simulation Ensemble, Case 1: opr and gor for one production well
based on reruns of the 20 first updated fine scale ensemble members compared
to the fine scale reference production (thick line). The Figure shows from left
to right; the initial ensemble, the ensemble after 300, 900 and 2100 days of
updating. The first row shows the opr, and the second shows the gor.
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Figure 3: SCEnKF, Simulation Ensemble, Case 2: Vertical slice of log-permeability and
porosity for one ensemble member. The first row shows from left to right;
log-permeability after 0, 300, 900 and 2100 days of updating. The second row
shows the porosity at the selected days. The rightmost plots shows, from top
to bottom, reference log-permeability and porosity.

Case 2

The purpose of this case was to investigate how sensitive the SCEnKF is to
the selection of a biased initial ensemble. Recall that in Case 1, the mean
of the initial ensemble was identical to the reference model. The initial
ensemble was generated by first computing the overall mean within the three
separating layers of the reference reservoir, and adding layers constant value,
generated as independent Gaussian variables with high variance. Figure
3 again shows the development in time for κ and φ for one realisation.
Here we can see that the SCEnKF, is only able to correct the level of
each layer, and the realisations are drawn towards the mean value of the
ensemble. This can be explained by the seismic data dt , which only carries
information concerning contrasts, and not the actual level of the variables.
Again the uncertainty in the production forecasts is reduced, as seen in
Figure 4. Note however, that the bias is not entirely corrected for, and this
is caused by the incorrect centring of the prior. It should also be noted that
the production forecasts from the SCEnKF, is less biased than the forecasts
obtained running the EnKF only on a coarse scale with the same initial
ensemble, as shown in Figure 5.

CONCLUSIONS

Sequential data assimilation techniques for reservoir evaluation, has in recent
years been given much attention, due to the increasing amount of time
dependent data available. The EnKF is a Bayesian approach to this,
which has shown promising results. When considering high dimensional
reservoir models, approximations often have to be made, due to the high
computational demands in the fluid flow simulation. These approximations
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Figure 4: SCEnKF, Simulation Ensemble, Case 2: opr and gor for one production well
based on reruns of the 20 first updated fine scale ensemble members compared
to the fine scale reference production (thick line). The Figure shows from left
to right; the initial ensemble, the ensemble after 300, 900 and 2100 days of
updating. The first row shows the opr, and the second shows the gor.
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Figure 5: EnKF, Coarse Scale, Case 2: opr and gor for one production well based on
reruns of the 20 first updated coarse scale ensemble members compared to the
fine scale reference production (thick line). The Figure shows from left to right;
the initial ensemble, the ensemble after 300, 900 and 2100 days of updating.
The first row shows the opr, and the second shows the gor.
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are known to introduce bias, and the SCEnKF was therefore proposed as an
extension to the EnKF in order to correct for this.

Testing the SCEnKF on two different case studies including both time-lapse
seismic and production data revealed that the success of this method depends
highly on the centring of the initial ensemble. This is due to lack of
information about the level of the variables in seismic data. It is therefore of
utmost importance that the prior model is selected such that it reflects the
true reservoir. This may be a complicated task and should be performed in
collaboration with both geologists, and using available well observations. It
appears however, that the scale-correction in the SCEnKF partly corrects for
bias in production forecasts, and that lack of precise observations concerning
the level of reservoir variables is the major problem.

The problem of low rank in the estimated covariance matrices, both in
the EnKF and the SCEnKF, can be handled using Principal Component
Analysis. However, such an approach tend to underestimate the uncertainty
in the ensemble, and we could experience an ensemble collapsing towards the
centre of the ensemble. Moreover, the uncertainty in the empirical estimates
is not possible to assess.
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