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Curves and paths

A (parametrized) curve in the complex plane is a continuous map γ from a
compact1 interval [a,b] into C. We call the curve closed if its starting point
and endpoint coincide, that is if γ(a) = γ(b). We call it simple if it does not
cross itself, that is if γ(s) 6= γ(t ) when s < t . Exception: We allow the curve to
be closed, so a better way to say it is that γ(s) = γ(t ) and s < t imply s = a and
t = b.

A simple, closed curve is often called a Jordan curve, because it was Camille
Jordan (1838–1922) who first realized that the seemingly obvious fact that
such a curve divides the plane into two components – an inside and an out-
side – was far from obvious, and needed a proof.

Curves are in general quite nontrivial objects. Giuseppe Peano (1858–1932)
discovered a curve that covers an entire square in the plane, and William Os-

1If you don’t know what compact means, just treat it as a synonym for closed and bounded.
Compact sets have the property that from any sequence of points in the set, you can extract a
subsequence that converges to a point within the set.
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The Cauchy integral theorem 2

good (1864–1943) found that even a simple curve can have a positive area!
(Though it cannot fill a square.)

General curves are to too general for our purpose, which is to use them as
integration paths.

Definition of the path integral

Recall the definition of the Riemann integral, as the limit of what is known as
Riemann sums: ∫ b

a
f (x)d x = lim

n∑
j=1

f (x∗
j )(x j −x j−1)

where the sum involves a partition of [a,b]: That is, a set of points a = x0 <
x1 < ·· · < xn = b. There are also arbitrary points x∗

j ∈ [x j−1, x j ]. Finally, the

limit is to be taken as the partition gets finer and finer, which we may take to
mean that its mesh size, which is just the maximal value of x j − x j−1, goes to
zero.

A classic existence theorem on the Riemann integral states that it exists
(which means the limit exists) whenever f is continuous on [a,b].2

The Riemann integral as defined here works just as well if f is a complex
valued function. If you wish, you can integrate the real part and imaginary
parts separately and combine the results, but the definition and all the rules
of calculating with it works just fine as they are, even in the complex case.

Since we shall use the path integral as a tool to discover interesting things
about the Riemann integral, it is an absolute requirement that the path inte-
gral generalizes the Riemann integral. We just wish to replace [a,b] by a curve.

In some sense, [a,b] is a curve, parametrized by itself: Just put γ(t ) = t for
t ∈ [a,b].

To spare the suspense, here then is the definition of the path integral.

1 Definition. Assume γ : [a,b] → C is a curve, and f is a function defined on
the curve, by which we just mean that whenever z = γ(t ) then f (z) is defined.
Then

(1)
∫
γ

f (z)d z = lim
n∑

j=1
f (z∗

j )(z j − z j−1)

2More precisely, it is known to exist if and only if f is bounded, and the set of points where it
is discontinuous has measure zero. Whatever that means – I will not define it here.
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3 The Cauchy integral theorem

where the points z0, z1, . . . , zn are points in order along the curve, with the z∗
j

in between – or more precisely, we start with a partition a = t0 < t1 < ·· · < tn =
b of [a,b], pick t∗j ∈ [t j−1, t j ] and put z j = γ(t j ) and z∗

j = γ(t∗j ). Then the limit

is taken as the partition gets finer, just as in the definition of the Riemann
integral. We say the integral exists if the limit exists.

Notice that the details of the parametrization plays a very minor role here: It
is only used to keep track of, and using, the points along the curve in some
prescribed order. Therefore it is immediately obvious that the path integral
is independent of the particular parametrization. So, if [c,d ] is another in-
terval and h : [c,d ] → [a,b] is a continuous, strictly increasing function with
h(c) = a and h(d) = b, then we can put γ1(s) = γ(h(s)) and think of γ1 as a
reparametrization ofγ. It follows directly from the definition that

∫
γ1

f (z)d z =∫
γ f (z)d z.

Arc length

Under what circumstances can we expect the arc integral to exist? At the very
least, we must have some reassurance that the sums used to define it don’t
go to infinity as the partition becomes finer. So first, we must assume that the
integrand f (z) is bounded along γ, say | f (γ(t ))| ≤ M for some finite number
M . Even so, the best upper estimate we can think of is∣∣∣ n∑

j=1
f (z∗

j )(z j − z j−i )
∣∣∣≤ M

n∑
k=1

|z j − z j−i | ≤ M`(γ)

where `(γ) is the length of the curve.
That is, if we believe that such a thing as the length of a curve can be de-

fined, and if we further believe that a straight line is the shortest distance be-
tween two points: For surely then |z j −z j−i | is no greater than the length of the
curveγbetween the two points, and adding up this inequality for j = 1,2, . . . ,n
we get the inequality above.

Basically, we define the length of a curve precisely so that this is so.

2 Definition. The length of a curve γ : [a,b] →C is

`(γ) = sup
n∑

j=1
|z j − z j−1|, z j = γ(t j )

Version 2006–09–26



The Cauchy integral theorem 4

where the supremum is taken over all partitions a = t0 < t1 < ·· · < tn = b
of [a,b]. (More precisely, it is the supremum of the set of numbers obtained
from the above sum as we consider every partition.)

The curve γ is said to have finite length if `(γ) <∞. In that case, we shall
call the curve a path.

If we add new points to a partition, we obtain a new partition which is said
to be a refinement of the original. Clearly, any refinement can be obtained by
adding just one point at the time. Now, if we start with a partition a = t0 < t1 <
·· · < tn = b and add to it a single point t ′ between t j−1 and t j , then one term
z j − z j−1 in the sum above will be replaced by two terms, namely

|z ′− z j−1|+ |z j − z ′| ≥ |z j − z j−1|
so that the whole sum becomes larger (or at least not smaller). We have shown
that the sum in the definition above is non-decreasing when the partition is
refined. Therefore, we could also have defined the length as the limit of the
above sum as the partition is refined – in analogy with the path integral.

3 Proposition. If the curve γ is (piecewise) smooth, then

`(γ) =
∫ b

a
|γ′(t )|d t .

Proof: We begin by estimating |γ(t j )−γ(t j−1)|: Clearly

γ(t j )−γ(t j−1) =
∫ t j

t j−1

γ′(t )d t .

We wish to compare this to γ′(t j )(t j − t j−1):

γ(t j )−γ(t j−1)−γ′(t j )(t j − t j−1) =
∫ t j

t j−1

(
γ′(t )−γ′(t j )

)
d t .
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5 The Cauchy integral theorem

If γ is smooth then by definition γ′ is continuous, and hence uniformly con-
tinuous. So given ε > 0, we can choose δ > 0 so that |t − s| < δ implies |γ(t )−
γ(s)| < ε. If we have chosen a partition with |t j − t j−1| < δ for all j , we get
|γ′(t )−γ′(t j )| < ε in the above integral, so that∣∣γ(t j )−γ(t j−1)−γ′(t j )(t j − t j−1)

∣∣≤ (t j − t j−1)ε

and therefore ∣∣∣∣∣γ(t j )−γ(t j−1)
∣∣−|γ′(t j )|(t j − t j−1)

∣∣∣≤ (t j − t j−1)ε.

We may now sum this:

∣∣∣ n∑
j=1

∣∣γ(t j )−γ(t j−1)
∣∣− n∑

j=1
|γ′(t j )|(t j − t j−1)

∣∣∣
≤

n∑
j=1

∣∣∣∣∣γ(t j )−γ(t j−1)
∣∣−|γ′(t j )|(t j − t j−1)

∣∣∣≤ n∑
j=1

(t j − t j−1)ε= (b −a)ε.

As the partition is refined then we get in the limit

∣∣∣`(γ)−
∫ b

a
|γ′(t )|d t

∣∣∣≤ (b −a)ε.

Since ε> 0 was arbitrary, we are done.

The existence of the integral

Let us consider what changes happen in the sum as the partition is refined. If
f (γ(t )) varies only slightly in each interval, we expect the sum not to change
much with refinement.

So we assume that ε> 0 is given, and choose δ> 0 so that |s− t | < δ implies
| f (γ(s))− f (γ(t ))| < ε, and we then assume that the partition is chosen so that
0 < t j − t j−1 < δ.

We concentrate on one term f
(
γ(t∗j )

)(
γ(t j )−γ(t j−1)

)
and what happens

when we add new points to the partition, say t j−1 = s0 < s1 < ·· · < sm = t j :
Then this term is replaced by a sum, and the difference between the original
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term and the new sum is

f
(
γ(t∗j )

)(
γ(t j )−γ(t j−1)

)− m∑
j=1

f
(
γ(s∗j )

)(
γ(s j )−γ(s j−1)

)
=

m∑
j=1

(
f
(
γ(t∗j )

)− f
(
γ(s∗j )

))(
γ(s j )−γ(s j−1)

)
whose absolute value is not greater than

ε
m∑

j=1

∣∣γ(s j )−γ(s j−1)
∣∣≤ ε`

(
γ
∣∣
[t j−1,t j ]

)
(where γ

∣∣
[t j−1,t j ] is that part of γ corresponding to parameter values t lying in

[t j−1, t j ]).
Adding all the terms together, we conclude that when the partition is cho-

sen as explained above, and is then replaced by a refinement, the sum in (1)
changes by not more than ε`(γ).

By a sort of generalizing of Cauchy’s convergence criterion (the fact that
Cauchy sequences converge) this is enough to guarantee the existence of the
integral

∫
γ f (z)d z as a limit of the sum in (1) when the partition is refined,

and it also yields the estimate

(2)
∣∣∣∫
γ

f (z)d z −
n∑

j=1
f
(
γ(t∗j )

)(
γ(t j )−γ(t j−1)

)∣∣∣≤ ε`(γ)

assuming that the partition is chosen so that | f (γ(s))− f (γ(t ))| < ε whenever
s and t lie in the same interval [t j−1, t j ] defined by the partition.

To be just a bit more rigorous, write S(P ) for the sum in (1) associated with a partition
P . Let P1,P2, . . . be a sequence of progressively finer partitions, so that the maximal
mesh width of P j goes to zero when j →∞. The estimates above show that

(
S(P j )

)
is a

Cauchy sequence, and therefore convergent. So we are tempted to define
∫
γ f (z)d z =

lim j→∞ S(P j ). But what if we had chosen another sequence (P∗
j ) of partitions? Could

we have obtained a different limit? The answer is no, for P j and P∗
j have a common

refinement P∗∗
j , and

∣∣S(P j )−S(P∗
j )

∣∣ ≤ ∣∣S(P j )−S(P∗∗
j )

∣∣+ ∣∣S(P∗∗
j )−S(P∗

j )
∣∣ → 0 when

j →∞, again thanks to the above estimate.

Let us compute some integrals directly from the definition.

4 Lemma. For every path γ : [a,b] →Cwe find∫
γ

1d z = γ(b)−γ(a) and
∫
γ

z d z = 1
2

(
γ(b)2 −γ(a)2).
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7 The Cauchy integral theorem

Proof: The first integral is obvious, since every approximating sum has the
value

∑n
j=1

(
γ(ti )−γ(ti−1)

)= γ(tn)−γ(t0) = γ(b)−γ(a).
The other integral certainly exist, since the integrand is continuous. It can

be written as a limit of either of the two sums
n∑

j=1
γ(ti )

(
γ(ti )−γ(ti−1)

)
and

n∑
j=1

γ(ti−1)
(
γ(ti )−γ(ti−1)

)
,

so the integral is also a limit of the mean of the two, that is

1

2

n∑
j=1

(
γ(ti )+γ(ti−1)

)(
γ(ti )−γ(ti−1)

)= 1

2

n∑
j=1

(
γ(ti )2−γ(ti−1)2)= 1

2

(
γ(b)2−γ(a)2)

and the conclusion is once more obvious.

Piecewise smooth paths

5 Proposition. If γ is (piecewise) smooth then∫
γ

f (z)d z =
∫ b

a
f
(
γ(t )

)
γ′(t )d t .

Proof: We start by comparing one term in (1) with the corresponding part of
the integral:

f
(
γ(t∗j )

)(
γ(t j )−γ(t j−1)

)−∫ t j

t j−1

f
(
γ(t )

)
)γ′(t )d t =

∫ t j

t j−1

(
f
(
γ(t∗j )

)− f
(
γ(t )

))
γ′(t )d t

By choosing the partition fine enough we get
∣∣ f

(
γ(t∗j )

)− f
(
γ(t )

)∣∣ < ε, and so

we have∣∣∣ f
(
γ(t∗j )

)(
γ(t j )−γ(t j−1)

)−∫ t j

t j−1

f
(
γ(t )

)
)γ′(t )d t

∣∣∣≤ ε

∫ t j

t j−1

∣∣γ′(t )
∣∣d t .

Summing this we conclude that∣∣∣ n∑
j=1

f
(
γ(t∗j )

)(
γ(t j )−γ(t j−1)

)−∫ b

a
f
(
γ(t )

)
)γ′(t )d t

∣∣∣≤ ε

∫ b

a

∣∣γ′(t )
∣∣d t ,

and the proof is complete.
While the formula above is easier to use than the definition of the integral,

the next result is even easier, when it can be used:
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The Cauchy integral theorem 8

6 Proposition. Assume that f is continuous and has an antiderivative F , that
is a function so that F ′(z) = f (z) for all z in the domain of f . For every path
γ : [a,b] →C in the domain of f starting in α and ending in β we then find∫

γ
f (z)d z = F (β)−F (α).

Proof: If γ is smooth, then this is obvious, for then∫
γ

f (z)d z =
∫ b

a
f
(
γ(t )

)
γ′(t )d t =

∫ b

a

d

d t
F

(
γ(t )

)
d t

= F
(
γ(b)

)−F
(
γ(a)

)= F (β)−F (α).

The result follows for piecewise smooth paths by adding this result over each
smooth part.

But then the result follows by approximating a general path γ by broken
lines, which are special cases of piecewise smooth paths.

Approximating a path by a broken line

Consider an integration path γ : [a,b] →C. Given a partition a = t0 < t1 < ·· · <
tn = b of [a,b] we can create a new integration path γ∗ = [z0, z1, . . . , zn] (where
z j = γ(t j )) by joining straight line segments [γ(t j−1),γ(t j )]: More precisely, we
can define γ∗ : [0,n] →C by setting

γ∗( j + s) = sz j + (1− s)z j−1, s ∈ [0,1], j = 0,1, . . . ,n.

7 Proposition. Assume that f is continuous in a neighborhood of an integra-
tion path γ. Then with the above notation,∫

[z0,z1,...,zn ]
f (z)d z →

∫
γ

f (z)d z

with convergence as the partition is refined.

Proof: We find∫
γ∗

f (z)d z =
n∑

j=1

∫ 1

0
f
(
sz j + (1− s)z j−1

)
d s · (z j − z j−1)
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9 The Cauchy integral theorem

which we can compare directly with the sum in (1):∫
γ∗

f (z)d z −
n∑

j=1
f
(
γ(t∗j )

)(
γ(t j )−γ(t j−1)

)
=

n∑
j=1

∫ 1

0

(
f
(
sγ(t j )+ (1− s)γ(t j−1)

)− f
(
γ(t∗j )

))
d s · (γ(t j )−γ(t j−1

)
Here we can ensure that the integrand in the final line has absolute value less
than an given ε> 0 by choosing a fine enough partition, and then the absolute
value of the entire sum is less than ε`(γ).

The Cauchy integral theorem

A homotopy in a region Ω ⊆ C is simply a continuous mapping H : [0,1] ×
[0,1] →Ω.

As we keep s fixed, then t 7→ H(t , s) is a curve inΩ, and similarly if we keep
t fixed, then s 7→ H(t , s) is a curve as well.

So if we consider a small subrectangle [a,b]×[c,d ] of [0,1]×[0,1] then going
around this subrectangle in the positive direction we get a closed path in Ω,
which we could parametrize as follows:

γ(t ) =


H

(
tb + (1− t )a,c

)
, 0 ≤ t ≤ 1,

H
(
b, (t −1)d + (2− t )c

)
, 1 ≤ t ≤ 2,

H
(
(t −2)a + (3− t )b,d

)
, 2 ≤ t ≤ 3,

H
(
a, (t −3)c + (4− t )d

)
, 3 ≤ t ≤ 4.

In what follows we shall need not only to integrate along these paths, so they
have to have finite length, but we need strong estimates on these lengths.
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The easiest way to get such estimates is to assume that H is Lipschitz con-
tinuous, which means that there exists a constant L (called the Lipschitz con-
stant) so that∣∣H(c,d)−H(a,b)

∣∣≤ L
√

(c −a)2 + (d −b)2 for all a, b, c, d .

This is case if H has partial derivatives satisfying |∂H/∂t | ≤ L and |∂H/∂s| ≤ L,
so being Lipschitz continuous is not at all uncommon.

For fixed s, we estimate the length of the path t 7→ H(t , s) by noting that

n∑
j=1

∣∣H(t j , s)−H(t j−1, s)
∣∣≤ n∑

j=1
L · (t j − t j−1) = L · (tn − t0),

so the path is at most L times the length of the parameter interval. The same
argument holds for paths s 7→ H(t , s), and by combining these result we get
the same result for paths created as the boundary of subrectangles such as
above.

We shall call a function f analytic in a region Ω if its derivative f ′ exists at
all points inΩ. Note that we do not require f ′ to be continuous. That will turn
out to be a consequence of analyticity.

8 Theorem. (Cauchy–Goursat) Assume f is analytic in a region Ω, and let
H : [0,1]× [0,1] →Ω be a Lipschitz continuous homotopy. Let γ0 be the path
obtained from H by traversing the boundary of the square [0,1]× [0,1] once
in the positive direction, as explained above. Then∫

γ0

f (z)d z = 0.

Cauchy and Goursat did not prove the theorem in this form, but their versions
of it follows easily from this one, and the main idea of the proof below is due
to Goursat.
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11 The Cauchy integral theorem

Proof: Assuming that the integral is not zero, we shall arrive at a contradic-
tion. If the integral is not zero, we can divide f by the value of the integral, so
we might as well assume that ∫

γ0

f (z)d z = 1.

Now divide ä0 = [0,1]× [0,1] into four equal squares. The integral around

the main square is equal to the sum of the four integrals around the for sub-
squares (the interior parts cancel), so at least one of the four integrals must
have absolute value ≥ 1

4 . Let ä1 be one such square, and γ1 the path obtained
from H by following the boundary of ä1. So

∣∣∫
γ1

f (z)d z
∣∣≥ 1

4 .
Next, divideä1 into four pieces, and apply the same reasoning. We find one

of these, call it ä2, so that the corresponding path γ2 satisfies
∣∣∫
γ2

f (z)d z
∣∣ ≥

1
16 .

Now repeat this: We find squares ä0 ⊃ ä1 ⊃ ä2 ⊃ ·· · each with a path γk

corresponding to the boundary of äk , so that

(3)
∣∣∣∫
γk

f (z)d z
∣∣∣≥ 4−k = 2−2k .
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We shall now turn around and get an upper estimate on the same integral,
which contradicts the above.

First, we estimate the length of γk . The boundary of äk has length 4 ·2−k ,
and so `(γk ) ≤ 4L2−k .

Since all the squaresäk are compact (closed and bounded), there is a point
(t0, s0)) common to them all. And since f is differentiable at z0 = H(t0, s0), we
can write

f (z) = f (z0)+ f ′(z0)(z − z0)+e(z)(z − z0), lim
z→z0

e(z) = 0.

But
∫
γk

(
f (z0)+ f ′(z0)(z − z0)

)
d z = 0, so that

∫
γk

f (z)d z = ∫
γk

e(z)(z − z0)d z.

Now |z − z0| ≤ 2−k
p

2L for z on γk , and given ε> 0, we get |e(z)| < ε along γk

if k is large enough. Then∣∣∣∫
γk

f (z)d z
∣∣∣= ∣∣∣∫

γk

(
e(z)(z − z0)

)
d z

∣∣∣
≤ `(γk )ε2−k

p
2 ≤ 4L2−kε2−k

p
2 = 4

p
2εL2−2k ,

which contradicts (3) if ε< 1/(4
p

2L).

Homotopies with fixed end points. Consider two paths γ0 and γ1 in Ω, with
the same starting and ending points:3

γ0(0) = γ1(0) =α, γ0(1) = γ1(1) =β.

They will be called homotopic with fixed end points in Ω if there exists a ho-
motopy H so that

H(t ,0) = γ0(t ), H(t ,1) = γ1(t ), H(0, s) =α, H(1, s) =β, for all t and s.

9 Corollary. If γ0 and γ1 are homotopic with fixed end points in Ω and f is
analytic inΩ then ∫

γ0

f (z)d z =
∫
γ1

f (z)d z.

3There is no loss of generality to assume that all paths are parametrized on the interval [0,1],
and it simplifies the notation in many proofs.
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13 The Cauchy integral theorem

Proof sketch: This is quite obvious if the homotopy H is Lipschitz. The inte-
gral around the curve corresponding to the boundary of [0,1]× [0,1] consists
of four parts: γ0 in the forward direction, γ1 in the reverse direction, and two
parts (corresponding to t = 0 and t = 1) which are degenerate curves staying
still atα andβ. So the integrals along the latter two are zero, and what remains
is

∫
γ1

f (z)d z −∫
γ1

f (z)d z.
If H is not Lipschitz, then it can easily be approximated by Lipschitz homo-

topies: Given any partition 0 = t0 < t1 < ·· · < tn = 1, put H̃(t j , tk ) = H(t j , tk )
for j ,k = 0,1, . . . ,n and interpolate in each subrectangle [t j−1, t j ]× [tk−1, tk ]:

H̃
(
ut j + (1−u)t j−1, v tk + (1− v)tk−1

)
= uv H(t j , tk )+u(1− v)H(t j , tk−1)

+ (1−u)v H(t j−1, tk )+ (1−u)(1− v)H(t j−1, tk−1).

This is Lipschitz, and two of the boundary curves are still stationary at α and
β, so the first part applies. The other two boundary curves yield broken line
approximations to γ0 and γ1, and the result follows by going to the limit as
the partition is refined.

Homotopies via closed paths. Now consider two closed paths γ0 and γ1 inΩ:

γ0(0) = γ0(1), γ1(0) = γ1(1).

They will be called homotopic via closed paths inΩ if there exists a homotopy
H so that

H(0, t ) = γ0(t ), H(1, t ) = γ1(t ), H(s,0) = H(s,1), for all s and t .
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10 Corollary. If γ0 and γ1 are homotopic via closed paths in Ω and f is ana-
lytic inΩ then ∫

γ0

f (z)d z =
∫
γ1

f (z)d z.

Proof sketch: The proof is just like the corresponding proof for fixed end
points. The difference is that now, the two paths corresponding to t = 0 and
t = 1 are not stationary, but one is the reverse of the other, so their integrals
cancel.

A region Ω is called simply connected if any two closed paths in Ω are ho-
motopic in Ω via closed paths. Equivalently, any two paths with the same
starting and ending points are homotopic with fixed endpoints. Then the in-
tegral of an analytic function onΩ is independent of the path, so we can write∫
γ f (z)d z = ∫ β

α f (z)d z where γ starts in α and ends in β. In particular, f has

an antiderivative F which can be defined by F (z) = ∫ z
α f (ζ)dζ for some fixed

α ∈Ω. Also,
∫
γ f (z)d z = 0 for any closed path γ inΩ.

The logarithm, revisited. LetΩ be any simply connected region not contain-
ing 0. Then the function z 7→ 1/z has an antiderivative in Ω. If 1 ∈Ω, it seems
natural to use it as a starting point and define

F (z) =
∫ z

1

dζ

ζ
, so that F ′(z) = 1

z
.

From this we find using the chain rule:

d

d z

(
ze−F (z))= e−F (z) − z

e−F (z)

z
= 0,

so that ze−F (z) is a constant. Evaluating at z = 1 we find that this constant is 1,
and so eF (z) = z for all z. In other words, F is a branch of the logarithm, and
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15 The Cauchy integral theorem

we can write

ln z =
∫ z

1

dζ

ζ
.

IfΩ does not contain 1, we just pick any starting pointα ∈Ω and any β so that
eβ =α, and we can then put

ln z =β+
∫ z

α

dζ

ζ
.

Again, this will define a branch of the logarithm in Ω, and it is completely
determined by the requirement that lnα=β.

The most common way to create a simply connected region on which to
define a branch the logarithm is to introduce a branch cut, which is just a
simple curve starting at 0 and going off to infinity. (This curve must be para-
metrized on a half open interval in order to be able to continue to infinity,
so it’s a little different from curves previously considered. Most commonly a
half line is used, but any curve will do, and sometimes unorthodox choices are
useful.) One then letsΩ be all ofCwith the points on the branch cut removed.

Sometimes the branch defined by ln z = ∫ z
1

dζ
ζ will be called the princi-

pal branch of the logarithm in Ω, although this term is most commonly used
when the branch cut is the negative real axis.

Winding number. Consider now a path γ : [a,b] → C \
{

z0
}
, with γ(a) = α,

γ(b) =β. Assuming it lies in some simply connected subregion of C\
{

z0
}
, we

can write ∫
γ

d z

z − z0
= ln(β− z0)− ln(α− z0).

Taking the exponential of this, we find

(4) exp
∫
γ

d z

z − z0
= β− z0

α− z0
,

a result which is independent of the choice of branch for the logarithm.
In general, a path in C \

{
z0

}
can be divided into a finite number of sub-

paths for which the above reasoning holds, and so we can multiply together
the results (4) for the individual subpaths and get the same formula (4) for
the whole path. In particular, if γ is closed then exp

∫
γ 1/(z − z0)d z = 1, so the

integral is an integer multiple of 2πi . In other words, we have proved
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The Cauchy integral theorem 16

11 Proposition. If γ is a closed path in C\
{

z
}

0 then the number indγ(z0) de-
fined by

indγ(z0) = 1

2πi

∫
γ

d z

z − z0

is an integer.

indγ(z0) is called the index of z0 with respect to γ, or the winding number of γ
around z0. It quite literally measures the number of times γ winds around z0.

Cauchy’s integral formula

LetΩ be a region, and z ∈Ω. If the disk Bρ(z) is contained inΩ, then all circles
centered at z and with radius < r are homotopic via closed paths in Ω \

{
z
}
:

More precisely, let the circle γr be given by

γr (t ) = z + r e i t , t ∈ [0,2π]

and then that same formula provides the homotopy:4

H(t ,r ) = z + r e i t , r ∈ [r1,r2], t ∈ [0,2π]

defines a homotopy between γr1 and γr2 .

12 Theorem. (Cauchy’s integral formula) Assume that γ is a closed curve in
Ωwhich is homotopic via closed paths inΩ\

{
z
}

to one (and hence all) of the
above small circles. If f is analytic inΩ, then

f (z) = 1

2πi

∫
γ

f (ζ)

ζ− z
dζ.

Proof: The integrand is an analytic function of ζ in Ω \
{

z
}
. Therefore the in-

tegral is unchanged if we replace γ by an arbitrarily small circle γr around
z.

We also note that, by direct calculation∫
γ

1

ζ− z
dζ= 2πi .

4It was easier, when we proved general theorems on homotopies, to assume they were defined
on [0,1]× [0,1]. But nothing changes if we allow them to be defined on more general rectangles.
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17 The Cauchy integral theorem

Multiplying this by f (z) (which is independent of ζ, and therefore can be put
inside the integral), we see that we only need to prove

lim
r→0

∫
γr

f (z)− f (ζ)

ζ− z
dζ= 0.

(The limit seems unnecessary, but is harmless, since the integral does not de-
pend on r when r is small.)

But f is continuous, so | f (z)− f (ζ)| < ε for ζ on γr if r is small enough.
Then the whole integrand has absolute value smaller than ε/r , and the inte-
gration path has length 2πr , so the integral is smaller than ε/r · 2πr = 2επ.
This completes the proof.

From this we can already deduce the following. Recall that a function is
called entire if it analytic in all of the complex plane.

13 Theorem. (Liouville) A bounded, entire function is constant.

Proof: Assume that | f (z)| ≤ M for all z ∈C. Let z ∈C. If r > |z| then

f (z)− f (0) = 1

2πi

∫
γr

f (ζ)

ζ− z
dζ− 1

2πi

∫
γr

f (ζ)

ζ
dζ

= 1

2πi

∫
γr

f (ζ)
( 1

ζ− z
− 1

ζ

)
dζ= 1

2πi

∫
γr

f (ζ)
z

(ζ− z)ζ
dζ

so that

| f (z)− f (0)| ≤ 2πr

2π
M

|z|
(r −|z|)r

→ 0 as r → 0.

This shows that f (z) = f (0), and completes the proof.

14 Theorem. (Cauchy’s generalized integral formula) Under the assumptions
of theorem 12, f is infinitely differentiable, and

f (n)(z) = n!

2πi

∫
γ

f (ζ)

(ζ− z)n+1 dζ, n = 0,1,2, . . .

Proof: For n = 0, this is just the standard Cauchy formula.
The proof for the remaining n is just a matter of differentiating with respect

to z under the integral sign. But in case you do not know when that is allowed,
we can do it directly:
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The Cauchy integral theorem 18

For n = 1, notice that

1

ζ− z
= 1

ζ− z0
+ z − z0

(ζ− z)(ζ− z0)

and substitute this value of 1/(ζ− z) into the final term:

1

ζ− z
= 1

ζ− z0
+ z − z0

(ζ− z0)2 + (z − z0)2

(ζ− z)(ζ− z0)2

Substitute into Cauchy’s formula and get

f (z) = f (z0)+ 1

2πi

∫
γ

f (ζ)

(ζ− z)2 dζ︸ ︷︷ ︸
A

·(z − z0)+ 1

2πi

∫
γ

f (ζ)

(ζ− z)2 dζ · (z − z0)︸ ︷︷ ︸
e(z)

·(z − z0)

where the term marked A must be f ′(z0), because the term marked e(z) goes
to zero as z → z0 (the integral is bounded, and the factor z − z0 takes care of
the rest).

The proof proceeds by induction. So assume the formula holds for a given
n. Let γr be a small circle surrounding z and itself completely surrounded by
γ. Then by the induction hypothesis,

f (n)(w) = n!

2πi

∫
γ

f (ζ)

(ζ−w)n+1 dζ, w on γr .

We apply the case n = 1 to the function f (n) and γr , then substitute the above
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19 The Cauchy integral theorem

result, interchange the order of integration, and rearrange a little:

f (n+1)(z) = 1

2πi

∫
γr

f (n)(w)

(w − z)2 d w

= n!

(2πi )2

∫
γr

∫
γ

f (ζ)

(w − z)2(ζ−w)n+1 dζd w

= n!

(2πi )2

∫
γ

∫
γr

f (ζ)

(w − z)2(ζ−w)n+1 d w dζ

= n!

2πi

∫
γ

f (ζ)
( 1

2πi

∫
γr

1

(w − z)2(ζ−w)n+1 d w
)

dζ

Now note that the function w 7→ (ζ−w)−n+1 is analytic on and inside γr , so
that the inner expression is just the generalized Cauchy formula for this func-
tion and n = 1. Thus the inner expression is the derivative of this function, at
w = z, so

f (n+1)(z) = n!

2πi

∫
γ

f (ζ)
n +1

(ζ− z)(n+2)
dζ,

and the proof is complete. The only camel you have been asked to swallow
concerns the possibility of interchanging the order of integration, and it seems
like a fairly small camel.

The global Cauchy integral formula

We sometimes need to work with the sum of integrals around several closed
paths. A bit of notation is helpful. If Γ = {

γ1, . . . ,γn
}

is a finite collection of
closed paths, we may call Γ a closed multipath.

Write
∫
Γ f (z)d z =∑n

k=1

∫
γk

f (z)d z and indΓ(z) =∑n
k=1 indγk (z). Obviously,

we will say a point is on Γ if it is on one of the paths γk .

15 Theorem. (Cauchy’s formula, global (holonomy) version) Assume thatΩ
is a region, and that Γ is a closed multipath in Ω so that indΓ(z) = 0 for any
z ∉Ω. If f is analytic inΩ then for any z ∈Ω that is not on Γ,

indΓ(z) f (z) = 1

2πi

∫
Γ

f (ζ)

ζ− z
dζ.

Proof: Inserting the definition of the index on the left hand side, we see that
what we must prove is ∫

Γ

f (ζ)− f (z)

ζ− z
dζ= 0.
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The Cauchy integral theorem 20

The integrand here is more regular than it looks: We can define a continuous
function g onΩ×Ω by

g (z,ζ) =


f (ζ)− f (z)

ζ− z
, ζ 6= z,

f ′(z), ζ= z.

Now define the function h on C by

h(z) =


∫
Γ

g (z,ζ)dζ, z ∈Ω,∫
Γ

f (ζ)

ζ− z
dζ, z ∈C not on Γ and indΓ(z) = 0.

Note that for some z both cases in the above definition apply, but for those
z the two definitions agree because of the assumption indΓ(z) = 0 and the
definition of the index.

The assumption that the index is zero for points outside Ω implies that at
least one of the cases apply for any z, so h is indeed defined in the entire plane.
Moreover each of the two parts of the definition defines an analytic function
in an open set, so h is entire.

Finally, when |z| is large then indΓ(z) = 0 so the second part of the defi-
nition applies, and a simple estimate shows that h(z) → 0 as z →∞. In par-
ticular h is bounded, so it is constant by Liouville’s theorem. And then this
constant must be zero by what we just showed, so h(z) = 0 for all z. This com-
pletes the proof.
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