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This little note is devoted to a proof of the Riemann–Lebesgue lemma (see
p. 504 in the book). This proof is simpler, and the statement stronger, than in
the book.

We actually need this greater generality in order to use it in Chernoff’s
proof of the Fourier representation theorem (see his Monthly paper, linked
from my home page).1

We use the following notation for the nth Fourier coefficient of a 2π-periodic
function f :

f̂ (n) = 1

2π

∫ π

−π
f (x)e−i nx d x.

1 Lemma. (Riemann–Lebesque) Assume that f is 2π-periodic, bounded and
integrable. Then f̂ (n) → 0 when n →±∞.

Proof: We shall prove this only for real-valued functions. If f is complex-
valued, the result will follow from the result applied to the real and imaginary
parts of f separately.

First, we prove the result for an extremely special case: Namely, a single
step, which is a function of the form

s(x) =
{

1 a +2kπ≤ x ≤ b +2kπ, k ∈Z
0 otherwise

where a < b and b −a < 2π. Then

ŝ(n) = 1

2π

∫ b

a
e−i nx d x = e−i nb −e−i na

2πi n
→ 0 as n →±∞

since the numerator is bounded and the denominator goes to infinity.
Second, since any step function is a linear combination of a finite number

of single steps, the same result holds for step functions.

1There exists an even more general statement that is beyond us at this point: It requires the
use of the Lebesgue integral, which is more general than the Riemann integral that is introduced
in calculus.
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Finally, now assume that f is integrable, and pick any ε > 0. It follows –
practically direct from the definition of integrability – that there exists a step
function s with

1

2π

∫ π

−π
| f (x)− s(x)|d x < ε.

From this we get

| f̂ (n)− ŝ(n)| = 1

2π

∣∣∣∫ π

−2π

(
f (x)− s(x)

)
e−i nx d x

∣∣∣≤ 1

2π

∫ π

−2π

∣∣ f (x)− s(x)
∣∣d x < ε

as well. We have shown that ŝ(n) → 0, so there is some N so that |n| ≥ N im-
plies |ŝ(n)| < ε. Whenever |n| ≥ N , then

| f̂ (n)| ≤ | f̂ (n)− ŝ(n)|+ |ŝ(n)| < ε+ε= 2ε,

which finishes the proof.

Notice that the Riemann–Lebesgue lemma says nothing about how fast f̂ (n)
goes to zero. With just a bit more of a regularity assumption on f , we can
show that f̂ (n) behaves roughly like 1/n or better. This is easy if f is continu-
ous and piecewise smooth, as is seen from the identity f̂ ′(n) = i n f̂ (n), which
arises from partial integration. Applying the Riemann–Lebesgue lemma to f ′
we conclude that f̂ (n) is 1/n times something that goes to zero, so f̂ (n) → 0
faster than 1/n.

We can even drop the requirement of continuity: Just so long as f is piece-
wise smooth, partial integration yields a formula just like f̂ ′(n) = i n f̂ (n), with
the addition of some extra terms coming from the points of discontinuity. But
these extra terms are bounded, so this time we get f̂ (n) → 0 as fast as 1/n.

If f has more continuous derivatives, we can keep on differentiating: We

get f̂ (k)(n) = (i n)k f̂ (n), and conclude that f̂ (n) goes to zero faster than n−k .

Version 2006�10�31


