Linear systems of ODEs with variable coefficients

Harald Hanche-Olsen
hanche@math.ntnu.no
Let A be a matrix valued function defined on some interval, with each $A(t)$ bein an $n \times n$ matrix. A is supposed to be a Lipschitz continuous function of its argument.

This note is about the linear system

$$
\begin{equation*}
\dot{x}=A x+b(t) \tag{1}
\end{equation*}
$$

where $x(t)$ is a (column) n-vector for each t, and b is a vector valued function of t, assumed throughout to be continuous.

Consider the following ODE for a matrix valued function Φ, where each $\Phi(t)$ is also supposed to be an $n \times n$ matrix:
(2)

$$
\dot{\Phi}=A \Phi
$$

1 Proposition. Let Φ be a matrix valued function satisfying (2). If $\Phi\left(t_{0}\right)$ is invertible for some t_{0} then $\Phi(t)$ is in fact invertible for every t, and the inverse $\Psi(t)=\Phi(t)^{-1}$ satisfies the differential equation

$$
\begin{equation*}
\dot{\Psi}=-\Psi A . \tag{3}
\end{equation*}
$$

Proof: The differential equation for Ψ is easy to derive: Just differentiate the relation $\Psi \Phi=I$ to get

$$
0=\frac{d}{d t}(\Psi \Phi)=\dot{\Psi} \Phi+\Psi \dot{\Phi}=\dot{\Psi} \Phi+\Psi A \Phi
$$

which when multiplied on the right by Ψ (and using $\Phi \Psi=I$) yields (3).
The above proof requires of course not only that Φ is invertible for all t, but also that the inverse is differentiable.

We can make the argument more rigourous by turning inside out, defining Ψ to be the solution of (3) satisfying the initial condition $\Psi\left(t_{0}\right)=\Phi\left(t_{0}\right)^{-1}$. Then we differentiate:

$$
\frac{d}{d t}(\Psi \Phi)=\dot{\Psi} \Phi+\Psi \dot{\Phi}=-\Psi A \Phi+\Psi A \Phi=0
$$

so that $\Psi \Phi=I$ for all t, since it so at $t=t_{0}$.

