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This note is about the classification of equilibrium points of nonlinear sys-
tems in the plane. We shall deal only with those cases which can be (mostly)
decided on the basis of the linearization of the systems around the equilib-
rium.

But first, a few generalities that apply in any dimension: Consider a system
of the form

ż = f (z)

where the unknown function z is vector valued: z(t ) ∈Rn .
If z0 is an equilibrium point, i.e., if f (z0) = 0, then the change of variables

w = z − z0 changes the system into one with an equilibrium at 0. So we lose
no generality in assuming that z0 = 0, and shall do so through this note.

So assume now that f (0) = 0, and also that f is differentiable at 0: Thus

f (z) = Az +o(r ), z → 0,

where A is an n×n matrix, called the Jacobian matrix or the derivative of f at
0.1 We write d f (0) or even f ′(0) for this matrix.

In order to see what information can be gained from the Jacobian matrix,
it is useful to reduce attention to a handful of normal forms. If we perform a
linear change of variables:

z =V w,

where V is an invertible matrix, the system is transformed into the form V ẇ =
f (V w), or

ẇ = g (w), where g (w) =V −1 f (V w).

Since g (w) = V −1 f (V w) = V −1
(

f ′(0)V w + o(|V w |)) = V −1 f ′(0)V w + o(|w |),
we must have

g ′(0) =V −1 f ′(0)V.

In other words, g ′(0) is similar to f ′(0).

1Actually, I prefer to think of it as a linear functional.
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Normal forms of equilibria for planar systems

It is a fundamental result of linear algebra that every real 2×2 matrix is similar
one of the following normal forms:

Two distinct, real eigenvalues: (
λ1 0
0 λ2

)
These give rise to the nodes (λ1λ2 > 0) and saddle points (λ1λ2 < 0). The de-
generate cases (λ1λ2 = 0) require more detailed analysis and will be skipped
here.

Two complex eigenvalues σ± iω, with σ,ω ∈R and ω 6= 0:(
σ −ω
ω σ

)
These give rise to foci [singular: focus] when σ 6= 0. The cases where σ= 0 (the
linearization is a center) require more detailed analysis

One real eigenvalue (two possibilities):(
λ 1
0 λ

) (
λ 0
0 λ

)
These are borderline cases between the nodes and the foci.

Nodes

We consider a planar system of the form

ẋ =λ1x + g (x, y), g (x, y) = o(r ),

ẏ =λ2 y +h(x, y), h(x, y) = o(r ),

where the “little-oh” notation refers to the limit as r =
√

x2 + y2 → 0. We must
also assume that g and h are sufficiently regular that the existence and unique-
ness theorems hold: C 1 is the usual assumption, but Lipschitz continuity is
sufficient in the first part of the analysis.

To investigate stability of the system, use polar coordinates:

ṙ = xẋ + y ẏ

r
= λ1x2 +λ2 y2 +xg (x, y)+ yh(x, y)

r
= λ1x2 +λ2 y2

r
+o(r ).
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First, assuming λ1 ≤λ2 < 0 we conclude

ṙ <λ2r +o(r ) < (λ2 +ε)r

for any ε and r small enough.2 Thus r → 0 exponentially as t → ∞, if the
starting value is small enough. This is the stable case.

But we can say more: We also find

θ̇ = x ẏ − y ẋ

r 2 = λ2x
(
y +h(x, y)

)−λ1 y
(
x + g (x, y)

)
r 2 = (λ2 −λ1)

x y

r 2 +o(1),

and using x y = r cosθ · r sinθ = 1
2 r sin2θ,

θ̇ = 1
2 (λ2 −λ1)sin2θ+o(1).

If r is small enough, the final o(1) term will be small enough so that θ̇ must
have the same sign as sin2θ, except inside four narrow sectors around the
axes, as indicated in figure 1.

x

y

Figure 1: An attractive node

Outside the shaded sectors, the movement must be roughly as indicated,
in the sense that ṙ < 0 and the sign of θ̇ must be as shown by the arrows.

2The precise statement: Given any ε> 0 there is some δ> 0 so that the inequality holds when-
ever r < δ.
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In particular, any trajectory that does not stay within the horizontal sectors
must end up inside the vertical ones. (For example, looking in the first quad-
rant but outside the shaded sectors, we have a definite lower positive bound
on θ̇, so the trajectory must cross into the sector around the y axis in a finite
time.)

By considering ever small scales, we can redraw the figure with ever nar-
rower shaded sectors. So we conclude that the majority of trajectories will ap-
proach the origin from the vertical direction, but it is conceivable that some
trajectories will do so horizontally.

In fact, some of them must do so, as we show next.
Consider initial data (x0, y0) with x0 > 0 fixed and small, while y0 varies

(i.e., on the thin vertical line indicated in the righthand side of Figure 1). For
large enough (but still small) |y0|, the initial point will be outside the shaded
sector, and so the solution will remain outside the sector. For others, the so-
lution will escape the sector either upwards or downwards. Now, by the con-
tinuous dependence of solutions with respect to initial data, the set of y0 for
which the solution escapes upwards will be an open set A, and the set for
which it escapes downwards will be another open set B . In fact, these sets
will be intervals, since solution curves cannot cross, so any solution trapped
above one that escapes upwards will itself do so, and similarly for the down-
ward escaping ones. So there must be at least one y0 that belongs to neither
A nor B , and the trajectory through this point must approach the origin while
staying inside the sector (since there is nowhere else for it to go).

If we assume a bit more regularity of the righthand side of the equation,
one can show that only one curve from each side will approach the origin
horizontally, but we shall not prove it here.

If both eigenvalues are positive rather than negative, we get the described
behaviour of solutions, but this time as t →−∞. There is no need to repeat the
analysis: Just apply the results of the above reasoning to the reversed system.

Coinciding eigenvalues.

ẋ =λx +εy + g (x, y), g (x, y) = o(r ),

ẏ =λy +h(x, y), h(x, y) = o(r ),

with λ 6= 0. The case ε = 0 is the case where the eigenspace corresponding to
the single eigenvalue is two-dimensional, while the case ε 6= 0 corresponds to
a Jordan normal form with a one-dimensional eigenspace. The latter is usu-
ally specified with ε= 1, but replacing y by εy yields the above form.
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We shall insist on having 0 ≤ ε< |λ|: For then

ṙ = xẋ + y ẏ

r
= λr 2 +εx y

r
+o(r ).

Noting as before that x y = 1
2 r 2 sin2θ, we find |εx y | ≤ 1

2 r 2 < 1
2 |λ|, so that ṙ has

the same sign as λ when r is small enough, and solutions tend to 0 exponen-
tially as t →∞ (if λ< 0) or t →−∞ (if λ> 0).

In other words, the question of stability is settled just as previously. What
happens in the angular (θ) direction is far less clear-cut.

Saddles

Next, we consider the case

ẋ =−λx + g (x, y), g (x, y) = o(r ),

ẏ =µy +h(x, y), h(x, y) = o(r ),

where λ,µ > 0 and the “little-oh” notation again refers to the limit as r =√
x2 + y2 → 0(0,0).
Polar coordinates are not quite as useful in this case, but we can instead

note that ẋ and x have opposite signs, so long as r is small and we stay outside
the thin sectors around the y axis in Figure 2.

In detail: Let ε > 0. If r is small enough then |g (x, y)| < εr . Whenever εr <
λ|x|, then ẋ and x must indeed have opposite signs. Squaring the inequality
we get ε2(x2+y2) <λ2x2, and assuming ε<λ, that is true if

p
λ2 −ε2 |x| < ε|y |.

A similar analysis shows that ẏ and y have the same signs outside the small
sectors around the x axis.

So outside the four sectors, all solutions must move in the general direction
indicated by the arrows.

In particular, any solution that strays outside the two horizontal sectors
will escape out of the neighbourhood in the vertical direction.

Repeating the argument from the node case, considering initial data on
the small vertical line segment across the positive x axis, we find that some
trajectory will approach the origin horizontally from the right (and similarly,
one from the left).

Once more, assuming a bit more regularity of the system we can show that
there is only one such trajectory from each side.
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Figure 2: A saddle point

This is somewhat easier to see than the corresponding result for nodes:
Assume the righthand side of the system is C 1. Thus g and h are C 1 func-
tions. Since both are o(r ), the first order partial derivatives of each are 0 at
(0,0), and it follows that ∂y h = ∂h/∂y = o(r ) as r → 0 (and similarly with
the three other derivatives). In particular, consider trajectories through two
nearby points (x, y1) and (x, y2) and compare ẏ at the two points:

µy2 +h(x, y2)−µy1 −h(x, y1) =µ(y2 − y1)+o(r ) (r → 0),

since the secant theorem implies g (x, y2) − g (x, y1) = (y2 − y1)∂y h(x,η) for
some η between y1 and y2. So we get ẏ2 − ẏ1 ≈ µ(y2 − y1), and the two tra-
jectories must move apart exponentially in the vertical direction. (This anal-
ysis is not quite rigorous, since the two solutions will also move apart in the x
direction, albeit more slowly. But this minor problem can be fixed.)

Taken together with the origin itself, the two curves approaching the ori-
gin from each side form what is known as the stable curve of the equilibrium
point. This curve is tangential with the x axis. All initial data near the equilib-
rium point and not on the stable curve, must escape out of small neighbour-
hoods.

Now we can reverse time and repeat the argument. In the original sys-
tem, we conclude that there is an unstable curve which is tangent to the y
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axis, along which solutions tend to the equilibrium points as t → −∞. And
all other initial data produces solutions that escape the neighbourhood when
time runs backwards.

Foci

Finally, we have saved the easiest case for last: systems on the form

ẋ =σx −ωy + g (x, y), g (x, y) = o(r ),

ẏ =ωx +σy +h(x, y), h(x, y) = o(r ),

where ω 6= 0. In polar coordinates we get

ṙ =σr +o(r ), θ̇ =ω+o(1), as r → 0.

The first equation shows that if σ< 0 then r → 0 exponentially fast as t →∞,
and the equilibrium is stable.

Similarly, ifσ> 0 then r → 0 exponentially fast as t →−∞, and the equilib-
rium is unstable.

In either case, θ grows approximately at a linear rate as r → 0, so the solu-
tion spirals around the equilibrium point an infinite number of times.

This behaviour defines a focus in general.
Note that in the degenerate case σ = 0 the linearized system is a center,

but anything might happen to the nonlinear system: It could be a center or a
focus, or there could be an infinite sequence of closed trajectories around the
origin, typically with spirals in between.

Summary

Via a linear change of coordinates the above analysis applies to equilibrium
points of any C 1 planar system, so long as the eigenvalues of the Jacobian
matrix are distinct and have nonzero real part.

If both eigenvalues are real and of the same sign, we get a node. By defini-
tion, a node is either stable or unstable: In the stable case, all nearby trajec-
tories approach the equilibrium as t →∞. In the ustable case, they approach
the equilibrium as t →−∞. And in either case, they all do so tangentially to a
common line through the equilibrium point, with just two exceptions, which
approach from opposite sides tangentially to a different line. The two lines
are parallel to the eigenspaces of the Jacobian matrix.
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The node is stable if the eigenvalues are negative, and unstable if they are
positive. This result holds even if the eigenvalues are equal, but in the latter
case behaviour may be like either a node or a focus, and more detailed analy-
sis is needed.

If both eigenvalues are real and of opposite signs, we get a saddle point.
Through the saddle point are two curves, the stable curve which is tangent
to the eigenspace corresponding to the negative eigenvalue, and the unstable
curve which is tangent to the eigenspace corresponding to the positive eigen-
value. The stable and unstable curves are each composed of two trajectories
and the equilibrium point itself. The two trajectories on the stable curve ap-
proach the equilibrium point as t →∞, and those on the unstable curve ap-
proach the equilibrium point as t →−∞.

Finally, in the case of non-real eigenvalues, the two eigenvalues will be
complex conjugates of each other, and we get a focus: Solutions will spiral
towards the equilibrium either as t →∞ (the stable case) or t →−∞ (the un-
stable case).
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