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This note is about the behaviour of a nonlinear autonomous system ẋ = f (x)
(where x(t ) ∈Rn) near an equilibrium point x0 (i.e., f (x0) = 0).

The Hartman–Grobman theorem states that the system behaves “just like”
its linearization near the equilibrium point. However, this theorem requires
of the linearization that no eigenvalues have real part zero: Thus it is not the
appropriate tool for deciding instability where some eigenvalue has a positive
real part, since other eigenvalues may have a real part equal to zero in general.
The Hartman–Grobman theorem will decide stability when all eigenvalues
have negative real parts, but this is sort of a sledgehammer approach where
simpler tools will do the job.

We will first develop and use these simpler tools, then return to the Hartman–
Grobman theorem and its more appropriate uses later.

Stability and instability of equilibrium points

In this section, we use suitable Liapunov functions to prove the standard re-
sults on stability and instability of equilibria based on the eigenvalues of the
linearization. We consider estimates for the linear part first.

After a change of variables, a linear system ẋ = Ax can be written on the
form u̇ = Ju, where J is a matrix on Jordan normal form: I assume that you
know what this means, but remind you of the basic Jordan building block:

(1) λI +N =



λ 1 0 0 . . . 0
0 λ 1 0 . . . 0

0 0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 . . . . . . 0 λ 1
0 . . . . . . . . . 0 λ


where N is the matrix with 1 just above the main diagonal, and zeroes else-
where. For our purposes, it is useful to note that this is similar to a matrix
λI +εN , where each 1 above the diagonal is replaced by an ε. To be more pre-
cise, D−1(λI +N )D = λI +εN where D is the diagonal matrix with 1,ε,ε2, . . .
on the diagonal.
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The reason this is interesting is the estimate

(2) (λ−ε)|u|2 ≤ uT(λI +εN )u ≤ (λ+ε)|u|2

for any vector u. It follows via a simple calculation from |uTNu| = |u1u2 +
u2u3 +·· ·| ≤ |u|2, which in turn comes from the Cauchy–Schwarz inequality.

Now, I lied a bit above, for there are complex eigenvalues to be considered
as well. To make a long story short, complex eigenvalues come in mutually
conjugate pairs λ = σ± iω where σ,ω ∈ R and ω 6= 0. These can give rise to
Jordan blocks almost like (2), except each λ must be replaced by a 2×2matrix(

σ −ω
ω σ

)
and each 1 above the diagonal by a 2 × 2 identity matrix. But then we can
perform the same rescaling trick as before, essentially replacing each of these
identity matrices by ε times the identity, and we obtain an estimate just like
(2), but with σ= Reλ replacing λ in the upper and lower bounds.

All this handwaving amounts to a proof of the following:

1 Lemma. If A is a real, quadratic matrix, and each eigenvalue λ of A satisfies
α≤ Reλ≤β, then for any ε> 0, A is similar to a matrix Ã satisfying

(α−ε)|u|2 ≤ uT Ãu ≤ (β+ε)|u|2

for each vector u.

We are now in a position to show the stability result:

2 Proposition. Let x0 be an equilibrium point of ẋ = f (x), where f is a C 1

vector field. If Reλ < 0 for each eigenvalue of the Jacobian matrix of f at x0,
the equilibrium is asymptotically stable.

Proof: We may assume x0 = 0 without loss of generality (after all, it’s just a
change of variables). So the system is of the form

ẋ = f (x) = Ax +o(|x|).

Now the Jacobian A of f at 0 has only a finite number of eigenvalues, all of
which have negative real part – so there is some ε > 0 with Reλ ≤ −2ε for
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3 Linearization at equilibrium points

each eigenvalue λ. By Lemma 1, we can perform a further linear change of
variables so that the system takes the form

u̇ = Ãu +o(|u|),

and where uT Ãu ≤−ε|u|2 for all u.
Consider the function V (u) = 1

2 |u|2. Then

V̇ = uTu̇ = uT Au +o(|u|2) ≤−ε|u|2 +o(|u|2) < 0

when |u| is small enough, so V is a strong Liapunov function, and 0 is indeed
asymptotically stable.

3 Lemma. Consider an equilibrium point 0 for a dynamical system u̇ = g (u).
Let U be a C 1 function so that U (0) = 0, every neighbourhood of 0 contains

some u with U (u) > 0, and assume there is some neighbourhood of 0 so that
whenever u belongs to this neighbourhood and U (u) > 0, then U̇ (u) > 0 as
well. Then 0 is an unstable equilibrium point.

Proof: Let ε> 0 be so that whenever |u| ≤ ε and U (u) > 0, then U̇ (u) > 0.
Consider any δ> 0. We shall prove that there exists an orbit starting within

the δ-neighbourhood of 0 which must escape the ε-neighbourhood of 0.
So pick any u0 with |u0| < δ and U (u0) > 0. Write

K = {
u : |u| ≤ ε and |U (u)| ≥ |U (u0)|}.

K is closed and bounded, therefore compact. Since U̇ > 0 on K , U̇ has a posi-
tive lower bound on K , say U̇ (u) ≥ γ> 0 whenever u ∈ K .

Now let u be the solution with initial value u0. So long as u(t ) ∈ K then U (u)
will grow with a rate at least γ, so if u(t ) ∈ K for all K then U

(
u(t )

)
will grow

without bound, which is impossible because U is bounded on the compact
set K . Therefore u must leave K , and it can only do that by getting |u| > ε, i.e.,
by escaping the ε-neighbourhood as claimed.

4 Proposition. Let x0 be an equilibrium point of ẋ = f (x), where f is a C 1

vector field. If Reλ > 0 for some eigenvalue of the Jacobian matrix of f at x0,
the equilibrium is unstable.

Proof: As before, assume x0 = 0 without loss of generality. So the system is of
the form

ẋ = f (x) = Ax +o(|x|).
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We may as well assume we have already changed the variables so that A has
Jordan normal form. We can also assume that the Jordan blocks of A appear in
decreasing order of Reλ. Lump together all the blocks with the largest value
of Reλ, and write u for the corresponding components of x. Write v for the
remaining components. The system now has the form

u̇ = Bu +o(
√
|u|2 +|v2|),

v̇ =C v +o(
√
|u|2 +|v2|),

where each eigenvalue of B satisfies Reλ= β> 0, while each eigenvalue of C
satisfies Reλ ≤ α < β. We can certainly insist that α > 0 as well. Let 0 < ε <
1
2 (β−α).

We shall change variables yet again, separately for u and v this time, but
we will reuse the old variable names for u, v , B and C . We shall use Lemma 1
so that, after the variable change, we find

vTC v < (α+ε)|v |2, (β−ε)|u|2 < uTBu.

Let U (u, v) = 1
2 (|u|2−|v |2). We claim that U satisfies the conditions of Lemma

3, which will finish the proof.
The only property of U that is nontrivial to prove is the one on the sign of

U̇ . Now we find

U̇ = uTu̇ − vTv̇

= uTBu − vTC v +o(|u|2 +|v2|)
> (β−ε)|u|2 − (α+ε)|v |2 +o(|u|2 +|v2|),

and when U > 0 we have |u| > |v |, so we find

U̇ > (β−α−2ε)|u|2 +o(|u|2) > 0

when |u| is small enough.
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5 Linearization at equilibrium points

The Hartman–Grobman theorem

Consider the autonomous system ẋ = f (x) with an equilibrium point x0. We
shall assume that f is a C 1 function. The linearization of this system is u̇ =
Au, where A is the Jacobian matrix of f at x0. The general solution of the
linearized system is u = e t Au0.

The proof of the following theorem is beyond the scope of this text. A rela-
tively easy proof can be found in [4]. However, the proof is done in a Banach
space setting, which might make it less accessible. The theorem was originally
proved independently by Grobman [1] and Hartman [2].

5 Theorem. (Hartman–Grobman) Under the above assumptions, and with
the extra condition that every eigenvalue of A has nonzero real part, there is
a homeomorphism H from a neighbourhood S of 0 to a neighbourhood R of
x0, so that x(t ) = H(e t Au0) is a solution to ẋ = f (x) whenever e t Au0 ∈ S.

A homeomorphism is just a continuous map with a continuous inverse. Note
that it follows from the uniqueness theorem for solutions of ODEs that all so-
lutions in R have the form given above, for any point x ∈ R can be written
H(u0) for some u0 ∈ S, and then H(e t Au0) is a solution passing through x (at
t = 0).

One weakness of the Hartman–Grobman theorem is the assumption on
the eigenvalues, which cannot be avoided: When some eigenvalues have real
part zero, the detailed behaviour of the system near the equilibrium cannot
be derived from the linearization.

Another weakness of the theorem is that the conclusion is too weak for
many applications: A homeomorphism can map a node to a focus!

For example, consider the function

H(u, v) = (u cos s − v sin s,u sin s + v cos s), s =− 1
2 ln(u2 + v2).

Assuming that (u, v) satisfy the equations u̇ =−u and v̇ =−v (corresponding
to a stable node), we find ṡ = 1, and (x, y) = H(u, v) solves the system

ẋ =−x − y, ẏ = x − y,

which corresponds to a stable focus.
Of course, the function H above is not differentiable at 0. (It is continuous

there, if we add H(0,0) = (0,0) to the definition.) If we require that H and its
inverse be differentiable, such behaviour as seen in the example above be-
comes impossible.
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Unfortunately, we cannot guarantee differentiability of H in general. But
the following result [3] helps:

6 Theorem. (Hartman) Under the assumptions of the Hartman–Grobman the-
orem, if additionally f is a C 2 function and the real parts of all the eigenvalues
of A have the same sign, then the homeomorphism H can in fact be chosen
to be a C 1 diffeomorphism.

And by that we mean that H is C 1, and so is its inverse.

As a consequence of this, so long as the vector field f is C 2, any equilibrium
whose linearization is a node or focus is itself of the same type.

No matter how differentiable f may be, we cannot conclude any higher
degree of differentiability for H . And when eigenvalues exist in both the left
and right halfplanes, a homeomorphism is all we can hope for. All this makes
the Hartman–Grobman theorem quite a bit less useful than it looks at first
sight.
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