Solution set 2

to some problems given for TMA4230 Functional analysis
2004-02-11

Problem 4.5.5. The short version: $\left((S T)^{*} f\right)(x)=f(S T x)=\left(S^{*} f\right)(T x)=\left(T^{*}\left(S^{*} f\right)\right)(x)=\left(\left(T^{*} S^{*}\right) f\right)(x)$. But perhaps it is more instructive to note that the definition of the adjoint can be written $S^{*} f=f \circ S$, where - denotes the composition of functions. (When we write $S T$, that is really short for $S \circ T$.) So the identity we are asked to show is nothing but the obvious $f \circ(T \circ S)=(f \circ T) \circ S$.

Problem 4.5.8. In our notation, we are asked to prove $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$. More precisely, assuming $T \in$ $B(X, Y)$ is invertible, T^{*} is also invertible, with inverse $\left(T^{-1}\right)^{*}$.

But equation (11) says $(S T)^{*}=S^{*} T^{*}$. Apply with $S=T^{-1}$ to get $\left(T^{-1}\right)^{*} T^{*}=I^{*}=I$. And apply that with T and T^{-1} interchanged, to get $T^{*}\left(T^{-1}\right)^{*}=I$. Together, these two show that T^{*} and $\left(T^{-1}\right)^{*}$ are each other's inverses.

Problem 4.5.9. Note that any set and its closure have the same annihilator: Just recall that the null space of any bounded linear functional is closed. So what we are asked to prove is just ${ }^{1}$

$$
\mathcal{R}(T)^{\perp}=\mathcal{N}\left(T^{*}\right)
$$

Now, if $f \in Y^{*}$ then 2

$$
\begin{array}{rlr}
f \in \mathcal{R}(T)^{\perp} & \Leftrightarrow f(T x)=0 \quad \forall x \in X \\
& \Leftrightarrow\left(T^{*} f\right)(x)=0 \quad \forall x \in X \\
& \Leftrightarrow T^{*} f=0 & \\
& \Leftrightarrow f \in \mathcal{N}(T) . &
\end{array}
$$

Problem 4.5.10. Take a typical element $T x$ of $\mathcal{R}(T)$, where $x \in X$. We need to show that ${ }^{3} T x \in \mathcal{N}\left(T^{*}\right)_{\perp}$. Thus, we take $f \in \mathcal{N}\left(T^{*}\right)$, and must prove that $f(T x)=0$. But then $f(T x)=\left(T^{*} f\right)(x)=0$ since $T^{*} f=0$.

Problem 4.6.3. Assume that X is reflexive. This means that every linear functional on X^{*} is of the form $\hat{x}(f)=f(x)$, where $x \in X$. Moreover, the canonical map $C: x \mapsto \hat{x}$ is an isometric isomorphism of X onto $X^{* *}$. Briefly, $X^{* *}$ "is" X. So its dual $X^{* * *}$ "is" X^{*}, which means X^{*} is reflexive.

To make this precise, we must, like Bill Clinton, ask what the meaning of "is" is.
Consider $\varphi \in X^{* * *}$: a bounded linear functional on $X^{* *}$. Then $x \mapsto \varphi(\hat{x})$ is a bounded linear functional on X. So this defines $f \in X^{*}$ by the formula

$$
f(x)=\varphi(\hat{x})
$$

But recalling the definition of \hat{x}, this is

$$
\varphi(\hat{x})=\hat{x}(f), \quad x \in X
$$

Since every member of $X^{* *}$ is of the form \hat{x}, this means

$$
\varphi(\xi)=\xi(f), \quad \xi \in X^{* *}
$$

and that every $\varphi \in X^{* * *}$ can be written in this way, for some $f \in X^{*}$, is precisely the reflexivity of X^{*}.
Problem 4.6.8 and 9. (I have in fact covered this in the lectures, but I will post a solution anyway. Later.)

[^0]
[^0]: ${ }^{1}$ Recall that I write M^{\perp} for the annihilator, where Kreyszig writes M^{a}.
 ${ }^{2} \forall$ is short for "for all".
 ${ }^{3}$ What Kreyszig calls the annihilator ${ }^{a} B$, I prefer to call the preannihilator and write as B_{\perp} (the annihilator of a subset of X^{*} is contained in $X^{* *}$).

