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Problem 4.6.8. The set of f ∈ X∗ such that f |M = 0 is what I have called the annihilator M⊥ of M . And
the set of x ∈ X so that f(x) = 0 for each f ∈ M⊥ is the preannihilator (M⊥)⊥ of f ∈ M⊥. In this notation,
we are asked to prove that spanM = (M⊥)⊥.

First, that M ⊆ (M⊥)⊥ is trivial: It just says that if x0 ∈ M and if f(x) = 0 for every x ∈ M , then
f(x0) = 0. But (M⊥)⊥ is a subspace of X, so then spanM ⊆ (M⊥)⊥ as well. Finally, (M⊥)⊥ is closed, so
spanM ⊆ (M⊥)⊥.

Conversely, assume that x0 /∈ spanM . By the Hahn–Banach theorem (or rather a consequence of it – see
Lemma 4.6-7) there is a functional f ∈ X∗ with f(x0) 6= 0 and f |M = 0. Thus f ∈ M⊥, and then f(x0) 6= 0
implies x0 /∈ (M⊥)⊥.

Problem 4.6.9. Recall (Kreyszig p. 168) that M being total in X means spanM = X. In the notation
introduced above, we are asked to show that M is total if and only if M⊥ = {0}.

If M is total then M⊥ = {0} is an obvious consequence: For any bounded linear functional f which vanishes
on M vanishes on spanM (because f is linear), and then it vanishes on spanM (because f is continuous).

Conversely, if M⊥ = {0} then by the previous problem spanM = (M⊥)⊥ = {0}⊥ = X, so M is total.

Problem 4.7.5. More generally, a subset of X is dense if and only if its complement has empty interior. (The
statement of the problem follows from this just by using the definition of rare.)

Let A ⊂ X. Then A is dense in X if and only if A ∩ U 6= ∅ for every nonempty open set U ⊆ X. But
A ∩ U 6= ∅ is the same as saying U is not contained in the complement of A. And saying that a set contains
no open set is the same as saying it has empty interior.

Problem 4.7.6. If the complement M c of a meager set M is meager, then we have written X as a union of
two meager sets M and M c. By definition each is a countable union of rare sets. Joining two countable sets
of rare sets we again get a countable set of rare sets, which cannot have union X by the Baire theorem. This
is a contradiction.

Problem 4.7.7. This problem just states the contrapositive1 of the uniform boundedness theorem. So there
really is nothing to do here. (But it is useful to have the theorem in this form.)

Problem 4.7.8. Using the notation (almost)2 introduced in the problem, if x ∈ X with xj = 0 when j ≥ J ,
then fn(x) = 0 if n > J , otherwise |fn(x)| = n |xj | ≤ J‖x‖∞. So the family (fn)∞n=1 is pointwise bounded.
However, it is not uniformly bounded, for ‖fn‖ = n.

Extra: Prove that a closed subspace of a reflexive space is reflexive.
Let X be a reflexive space and Y ⊆ X a closed subspace. Assume η ∈ Y ∗∗. Define ξ ∈ X∗∗ by setting

ξ(f) = η(f |Y ) (f ∈ X∗).

Since X is reflexive, the functional ξ is really of the form f 7→ f(x) for some x ∈ X. So the above definition
becomes

η(f |Y ) = f(x) (f ∈ X∗).

We claim that x ∈ Y . For if x /∈ Y , there is a bounded linear functional on X with f |Y = 0 and f(x) 6= 0
(because Y is closed, see Lemma 4.6-7). But this is impossible since then 0 6= f(x) = η(f |Y ) = η(0) = 0.

So we now write
η(g) = g(x) (g = f |Y , f ∈ X∗).

But, by the Hahn–Banach theorem, every bounded linear functional on Y can be written f |Y with f ∈ X∗.
Thus η(g) = g(x) for all g ∈ Y ∗, where x ∈ Y . This proves that Y is reflexive.

1The contrapositive of a statement on the form “if A then B” is the equivalent statement “if not B then not A”.
2I dislike the convention of using different letters for a vector and its components, as in x = (ξj). There aren’t enough letters

in the alphabet, and this is wasteful.


