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Problem 4.3.7. (See the back of the book for solutions to this and other odd-numbered exercises.)

Problem 4.3.14. (The space X must be a real space for this to make sense, for a hyperplane in a complex
space does not divide the space in two pieces – the point being that 0 divides R into the two half lines, but 0
does not divide C; i.e., C \ {0} is connected.)

Writing the desired hyperplane H0 as {x ∈ X : f(x) = r}, we are looking for f ∈ X∗ with f(x) ≤ r when
x ∈ Sr(0) while f(x0) = r. This is fulfilled by the functional f̃ of Theorem 4.3-3.

Problem 4.3.15. Once more, see the back of the book for solutions to this and other odd-numbered exercises.
But also note that this result follows from the isometry of the canonical map from X into X∗∗ (Lemma 4.6-1).

Problem 4.7.10. Let fn be the linear functional on c0 given by fn(x) =
∑n

j1
xjyj .1 The condition of the

problem means that limn→∞ f(x) exists for each x ∈ c0. In particular, since a convergent sequence is bounded,
there is for each x ∈ c0 a constant cx so that |fn(x)| < cx for each n. By the Banach–Steinhaus theorem (also
known as the Uniform boundedness theorem, Theorem 4.7-3) there is a uniform bound ‖fn‖ ≤ c for all the
functionals fn. Since ‖fn‖ =

∑n
j=1|yj |, this implies

∑∞
j=1|yj | ≤ c < ∞.

Problem 4.7.13. (See the back of the book for solutions to this and other odd-numbered exercises.)

Problem 4.7.14. Clearly, (a) ⇒ (b) because ‖Tnx‖ ≤ ‖Tn‖‖x‖, and (b) ⇒ (c) because |g(Tnx)| ≤ ‖g‖‖Tnx‖.
Next, (c) ⇒ (b) by Problem 4.7.13, with Tnx replacing xn and g replacing f .
And finally, (b) ⇒ (a) by the Banach–Steinhaus theorem (Theorem 4.7-3).

Problem 4.12.10. Consider the identity map on X, but think of it as a linear map ι : X1 → X2. Then the
inclusion T1 ⊇ T2 implies that ι is continuous, and hence bounded. By the open mapping theorem, ι−1 is also
bounded, and hence continuous. This implies T1 ⊆ T2, and hence T1 = T2.

Exercise B.1. Assume ‖x‖ ≤ 1 and |xj | < 1 for some j. (Of course, the norm here is really ‖·‖∞.) We can
write the component xj as a convex combination tw−(1−t)w of w and −w, where |w| = 1 and t = 1

2

(
1+ |xj |

)
,

so 0 < t < 1. (If xj = 0, just put w = 1 and t = 1
2 instead.) Let y and z have all components equal to those of

x except the j-th component, where yj = w and zj = −w. Then ‖y‖ = ‖z‖ = 1, and x = ty + (1− t)z. Also,
y and z are different from x, so x is not an extreme point of the unit ball.

Every vector x in c0 has a component with |xj | < 1, since xj → 0 as j → ∞. Thus c0 has no extreme
points.

But c has many extreme points: In fact every member x ∈ c with ‖x‖ = 1 and the property that |xj | = 1 for
every j is an extreme point of the unit ball. The reason is that [−1, 1] (for real scalars) or {w ∈ C : |w| ≤ 1} (for
complex scalars) have as their extreme boundaries precisely the scalars with |w| = 1. Thus, if x = ty +(1− t)z
with ‖y‖ ≤ 1 and ‖z‖ ≤ 1 and 0 < t < 1, then also xj = tyj + (1 − t)zj with |yj | ≤ 1 and |zj | ≤ 1, and this
implies xj = yj = zj . Thus x = y = z.

An isometric isomorphism maps one unit ball bijectively onto the other, and therefore it also maps extreme
points to extreme points. Thus c and c0 cannot be isometrically isomorphic. (But they both have `1 for their
dual.)

Exercise B.2. First, if every Cauchy filter converges then so does any Cauchy sequence: For if (xj) is a
Cauchy sequence then, by definition, the diameter of a tail {xj : j ≥ n} can be made as small as we wish
merely by chosing n large enough. So the filter generated by the tails of the sequence is Cauchy, and hence
convergent. But the convergence of this filter is the same as convergence of the sequence.

Conversely, assume that X is complete, and let F be a Cauchy filter on X. For each n, let An ∈ F have
diameter less than 1/n. Let Fn = A1 ∩ . . . ∩An ∈ F . Thus F1 ⊇ F2 ⊇ · · ·, and diam Fn < 1/n. Pick xn ∈ Fn

for each n. Since the tail {xn, xn+1, . . .} ⊆ Fn, the diameter of this tail is also less than 1/n. Thus (xj) is a
Cauchy sequence, and hence convergent. Let x be its limit. If ε > 0 and n is big enough, ‖x− xn‖ < ε. Make

1As usual, I ignore Kreyszig’s preference for using different letters for a vector and its components, as in x = (ξj), writing
x = (xj) instead.



n even bigger, if necessary, so that also 1/n < ε. Then, if y ∈ Fn, ‖x− y‖ ≤ ‖x− xn‖+ ‖xn − y‖ < 2ε. Thus
F → x.

Now let X be a uniformly convex Banach space, f ∈ X∗, and ‖f‖ = 1. By definition, for each s < 1 there
is at least one x ∈ X with ‖x‖ = 1 and f(x) > s. Thus, the set Fs = {x ∈ X : ‖x‖ = 1 and f(x) > s} is
nonempty.2 Since the collection of sets Fs is totally ordered by inclusion, it generates a filter F . Then F is in
fact a Cauchy filter: For if ε > 0 there is some δ > 0 so that whenever ‖x‖ = ‖y‖ = 1 and ‖x + y‖ > 2 − δ,
then ‖x − y‖ < ε. Let s = 1 − 1

2δ. If x, y ∈ Fs then f(x + y) > 2s = 2 − δ. Since ‖f‖ = 1 this implies
‖x + y‖ > 2− δ, and so ‖x− y‖ < ε. Thus diam Fs ≤ ε, and so F is Cauchy. Let x be the limit of F . Since
the norm as well as f are continuous, we find ‖x‖ = f(x) = 1. This is unique, for if ‖y‖ = f(y) = 1 as well,
then as in the above argument we find ‖x + y‖ = 2 > 2− δ for any δ > 0, so that ‖x− y‖ < ε for any ε > 0.

Finally, let X be uniformly convex and C ⊆ X closed and convex. Let d = inf{‖x‖ : x ∈ C}, and let
Fs = {x ∈ C : ‖x‖ < s}. Then Fs 6= ∅ for each s > d, and so {Fs : s > d} generates a filter F as before. We
need to normalize elements of Fs in order to use the uniform convexity.

So let now x, y ∈ Fs and write x̃ = x/‖x‖, ỹ = y/‖y‖, so that ‖x̃‖ = ‖ỹ‖ = 1. Furthermore,

x̃ + ỹ =
x

‖x‖
+

y

‖y‖
= α

(
tx + (1− t)y

)
, α =

1
‖x‖

+
1
‖y‖

, t =
1

α‖x‖
, 1− t =

1
α‖y‖

.

Thus, since C is convex, we have tx + (1− t)y ∈ C, so that ‖tx + (1− t)y‖ ≥ d, and therefore ‖x̃ + ỹ‖ ≥ αd.
But by assumption ‖x‖ < s and ‖y‖ < s, so α > 2/s, and therefore ‖x̃ + ỹ‖ > 2d/s.

Let ε > 0, and pick δ > 0 as in the definition of uniform convexity. If s > d is small enough then
‖x̃ + ỹ‖ > 2d/s ≥ 2− δ, so that ‖x̃− ỹ‖ < ε. Then (subtracting and adding ‖x‖ỹ in the second step)

‖x− y‖ =
∥∥‖x‖x̃− ‖y‖ỹ

∥∥ ≤ ∥∥‖x‖(x̃− ỹ)
∥∥ +

∥∥(‖x‖ − ‖y‖)ỹ
∥∥ = ‖x‖‖x̃− ỹ‖+

∣∣‖x‖ − ‖y‖
∣∣ < sε + s− d,

which can be made as small as we wish by making ε and s − d small enough (where ε must be chosed first,
and s next).

This proves that F is a Cauchy filter, and its limit will be the point in C with smallest norm. (We skip
the finish of the proof, which is very similar to that for the previous question.)

Exercise B.3. To prove that the proposed norm on the quotient space is well defined, we note that, when
[x] = [y], that means [x− y] = 0 (by linearity of the map x 7→ [x]), so x− y ∈ Z, and the sets {x + z : z ∈ Z}
and {y + z : z ∈ Z} used to define ‖[x]‖ and ‖[y]‖, respectively, are the same.

Clearly, ‖0‖ = 0, and if [x] 6= 0 then ‖[x]‖ = infz∈Z‖x − z‖ = dist(x, Z) > 0 since Z is closed. If x and y
are arbitrary and z, w ∈ Z then ‖[x + y]‖ ≤ ‖x + y + z + w‖ ≤ ‖x + z‖+ ‖y + w‖. Taking infimums over z and
w we obtain the triangle inequality ‖[x] + [y]‖ ≤ ‖[x]‖+ ‖[y]‖. The equality ‖α[x]‖ = |α|‖[x]‖ is trivially true
when α = 0. When α 6= 0 it follows from the fact that {αz : z ∈ Z} = Z.

If Z is not closed then there is some x ∈ Z but not in Z. Then ‖[x]‖ = 0 but [x] 6= 0, which violates one
of the axioms for the norm – in fact, we get a seminorm but not a norm.

If ‖[x]‖ < 1 then ‖x + z‖ < 1 for some z ∈ Z, by the definition of ‖[x]‖. Then [x] = [x + z]. Thus the open
unit ball in X/Z is contained in the image of the open unit ball in X, which shows that the quotient map
X → X/Z is open. To this we might have added the obvious fact that ‖[x]‖ ≤ ‖x‖, so the quotient map has
norm equal to 1.

Since the equation T̃ [x] = Tx prescribes the value of T̃ on every element of X/Z, this of course defines T̃
uniquely, if it defines T̃ at all. To show that it does, assume [x] = [y]. Then x− y ∈ Z, so T (x− y) = 0. Thus
Tx = Ty.

Clearly ‖Tx‖ = ‖T̃ [x]‖ ≤ ‖T̃‖‖[x]‖ ≤ ‖T̃‖‖x‖, so ‖T‖ ≤ ‖T̃‖. Moreover, for any z ∈ Z then ‖T̃ [x]‖ =
‖T̃ [x + z]‖ = ‖T‖‖x + z‖. Taking the infimum over all z ∈ Z, we get ‖T̃ [x]‖ ≤ ‖T‖‖[x]‖, so that ‖T̃‖ ≤ ‖T‖.

Let wj ∈ X/Z with
∑
‖wj‖ < ∞. Pick xj ∈ X with wj = [xj ] and ‖xj‖ < ‖wj‖ + 2−j . Then

∑
‖xj‖ <

1 +
∑
‖wj‖ < ∞. Since X is complete,

∑
xj converges. Hence so does

∑
wj , since

∑n
j=1 wj =

∑n
j=1[xj ] =[∑n

j=1 xj

]
, the partial sums on the righthand side converges, and the quotient map is continous.

Now let T : X → Y be a bounded linear map, where X and Y are complete. Assume also that T has an
inverse T−1 : Y → X. The graph of T−1 is the image of the graph of T under the map X × Y → Y × X
which interchanges the components. But this map is an isomorphism, and so it maps closed subsets to closed
subsets. Thus the graph of T−1 is closed, and the closed graph theorem implies that T−1 is bounded.

Finally, let T : X � Y be a bounded linear map onto Y . Let Z be the kernel (null space) of T . Let
Q : X � X/Z be the quotient map, and let T̃ : X/Z � Y be the factored map defined above, so that T = T̃Q.
Now T̃ has an inverse, which must be bounded by the above paragraph. In particular it is open. We have also
shown that Q is open. Thus T = T̃Q is open.

2I forgot the condition ‖x‖ = 1 in the hint, but I hope you could figure out to add this condition yourself. Also, in the case of
complex scalars, every occurence of f here should actually be replaced by Re f .
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