For questions during the exam:
Harald Hanche-Olsen tel. 73593525

## Exam in TMA4230 Functional analysis <br> Tuesday 31 May 2005 <br> 09:00-13:00

Permitted aids (code D): Simple calculator (HP 30S)
Note: A Norwegian text is appended.
Answers in English, Norwegian, or a mixture of the two accepted.
Grades available: 21 June 2005

## Problem 1

a) State (but do not prove) the closed graph theorem, taking care to get its conditions right. A linear operator $P$ on a vector space $X$ is called a projection if $P^{2}=P$.

Two subspaces $Y, Z$ of $X$ are called complementary if $Y \cap Z=\{0\}$ and $X=Y+Z$ (that is, if every $x \in X$ can be written as $x=y+z$ for unique $y \in Y, z \in Z)$.
b) Let $P$ be a bounded projection on a normed space $X$. Show that the image (range) im $P$ and kernel (null space) ker $P$ are closed, complementary subspaces of $X$.
c) Conversely, let $Y$ and $Z$ be closed, complementary subspaces of a Banach space $X$. Show that there is a bounded projection on $X$ whose image is $Y$ and whose kernel is $Z$. Hint: You must write $P(y+z)=y$ for $y \in Y$ and $z \in Z$. Use the closed graph theorem.

## Problem 2

a) State (but do not prove) the spectral mapping theorem for polynomials applied to members of an algebra with unit.
b) Assume that a member $x$ of an algebra with a unit $e$ satisfies a polynomial identity of the form

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} e=0 .
$$

Show that then the spectrum of $x$ is finite. As a special case, show that if $x^{4}-1=0$ then $\sigma(x) \subseteq\{-1,+1,-i,+i\}$.

Problem 3 Assume $1<p<\infty$, and let $U$ and $V$ be disjoint open and convex subsets of $L^{p}(\Omega, \mu)$. Then there exists some $w \in L^{q}(\Omega, \mu)$ (where $p$ and $q$ are conjugate exponents) so that

$$
\int_{\Omega} u w d \mu<\int_{\Omega} v w d \mu
$$

for all $u \in U$ and $v \in V$.
Prove this. Explain what general theorems you are using, and write up the statement of those theorems.

## Problem 4

a) State (but do not prove) the spectral theorem for self-adjoint bounded operators on a Hilbert space. Also state the defining properties of a spectral family, and briefly state the definition of the integral $\int \lambda d E_{\lambda}$ occurring in the spectral theorem. Finally, write the corresponding integral for $f(T)$ where $f \in C(\sigma(T))$.
b) Assume that the self-adjoint bounded operator $T$ has finite spectrum: Say $\sigma(T)=$ $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ where $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}$. What will the corresponding spectral family look like? Rewrite the integral in the spectral theorem as a sum.

