TMA4230 Functional Analysis, 31 May 2005

Suggested solution

Text in small type, like this, is not part of the solution, but rather comments on the solution.

Problem 1

a) The closed graph theorem states that, if X and Y are Banach spaces and $T: X \rightarrow Y$ is a linear operator with closed graph in $X \times Y$, then T is bounded.

An operator with a closed graph is itself called closed, so an even briefer statement of the theorem is possible and acceptable. Kreyszig considers the case where T is defined only on a closed subspace of X. This is only apparently more general, since a closed subspace of a Banach space is itself a Banach space. But of course, this formulation is also acceptable. It is necessary for both X and Y to be Banach spaces, as counterexamples can be constructed if either of them is not complete.
b) First, ker P is a closed subspace: This is true of the kernel of every bounded linear operator, whether or not they are projections. From $P^{2}=P$ we get $P P x=P x$, so that $P y=y$ if $y=P x \in \operatorname{im} P$. It follows that $\operatorname{im} P=\operatorname{ker}(I-P)$, which is a closed subspace. If $y \in \operatorname{im} P \cap \operatorname{ker} P$ then $y=P y=0$, so $y=0$. Thus $\operatorname{im} P \cap \operatorname{ker} P=\{0\}$. And we can always write $x=P x+(I-P) x$ with $P x \in \operatorname{im} P$ and $(I-P) x \in \operatorname{ker} P$, so that $X=\operatorname{im} P+\operatorname{ker}(I-P)$.
c) By assumption, every $x \in X$ is uniquely written $x=y+z$ with $y \in Y$ and $z \in Z$. If P is a projection with image Y and kernel Z, then we are forced to have $P y=y$ and $P z=0$, so $P x=P(y+z)=y$. Moreover, this is well defined P because of the uniqueness of the decomposition of x.
To prove the linearity of P is straightforward, and I'll skip it here.
To prove that P is bounded, we use the closed graph theorem. If $x \in X$ we write as before $x=y+z$ with $y \in Y, z \in Z$, and note that $P x=y$. Thus we get a pair $(x, y)=(y+z, y)$ in the graph of P, and we note that every member of the graph of P can be written this way. Put differently, a pair (x, y) belongs to the graph of P if and only if $y \in Y$ and $x-y \in Z$.

Let now (x_{n}, y_{n}) belong to the graph of P for each n, and assume $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in the norm topology, i.e., $\left\|x_{n}-x\right\| \rightarrow 0$ and $\left\|y_{n}-y\right\| \rightarrow 0$.

Now, since Y is closed, $y \in Y$ is an immediate consequence. And since $x_{n}-y_{n} \rightarrow x-y$ and $x_{n}-y_{n} \in Z$, and moreover Z is closed, we get $x-y \in Z$. Thus the limit (x, y) belongs to the graph of P. We have proved that P has a closed graph, and therefore the boundedness of P.

Problem 2

a) If A is an algebra with unit, $x \in A$, and p is a polynomial, then $\sigma(p(x))=p(\sigma(x))$.
b) We apply the identity of the previous question. Since now $p(x)=0$, we get $\sigma(p(x))=\{0\}$, so that $p(\sigma(x))=\{0\}$. That is, $\sigma(x)$ is contained in the zero set of p, which is a finite set.
Special case $p(t)=t^{4}-1$: The zero set of p is $\{-1,+1,-i,+i\}$.

Problem 3

a) Any bounded self-adjoint operator T on a Hilbert space H can be written

$$
T=\int_{\mathbb{R}} \lambda d E_{\lambda}
$$

where $\left(E_{\lambda}\right)_{\lambda \in \mathbb{R}}$ is the spectral family of T.
The spectral family satisfies these properties: Each E_{λ} is a self-adjoint projection, $E_{\lambda} \leq E_{\mu}$ if $\lambda<\mu$, $E_{\lambda}=0$ for $\lambda<m$ and $E_{\lambda}=I$ for $\lambda \geq M$ where m and M are the smallest and largest elements of $\sigma(T)$, and E_{λ} is the strong operator limit of E_{μ} as $\mu \rightarrow \lambda^{+}$.
The integral is the limit - in the norm topology - of the Riemann-Stieltjes sums

$$
\sum_{k=1}^{n} \lambda_{k}^{*}\left(E_{\lambda_{k}}-E_{\lambda_{k-1}}\right)
$$

where $\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n}, \lambda_{0}<m, \lambda_{n} \geq M, \lambda_{k-1} \leq \lambda_{k}^{*} \leq \lambda_{k}$ for $k=1, \ldots, n$, and the limit is taken as the norm $\max _{k}\left|\lambda_{k}-\lambda_{k-1}\right|$ goes to zero.
Finally,

$$
f(T)=\int_{\mathbb{R}} f(\lambda) d E_{\lambda}
$$

for any continuous function f on $\sigma(T)$.
The latter definition requires values of f outside $\sigma(T)$, for example in any gaps in the spectrum. This is remedied by expanding the definition of f in a suitable way, for example by making it affine in each such gap. The exact manner of extension is unimportant, in the limit.
b) It is known that E_{λ} is constant in each subinterval of the complement of the spectrum. There are $n+1$ such intervals, yielding $n+1$ different values of E_{λ}. By the continuity from the right of the spectral map, the value of each $E_{\lambda_{k}}$ is the value of E_{λ} in the interval to the right of λ_{k}. Thus

$$
E_{\lambda}= \begin{cases}0 & \lambda<\lambda_{1} \\ E_{\lambda_{k}} & \lambda_{k} \leq \lambda<\lambda_{k+1}, \quad k=1, \ldots, n-1 \\ I & \lambda \geq \lambda_{n}\end{cases}
$$

If we write $P_{1}=E_{\lambda_{1}}$ and $P_{k}=\left(E_{\lambda_{k}}-E_{\lambda_{k-1}}\right)$ for $k=2, \ldots, n$ the integral becomes

$$
T=\int_{\mathbb{R}} \lambda d E_{\lambda}=\sum_{k=1}^{n} \lambda_{k} P_{k} .
$$

The following question was not supposed to be here. It had been replaced by a different question, but then an early version was delivered to the exam office by mistake.
The students were told around 11:30, and told that they could skip this question and still get a full score.
c) The definition of U_{t} becomes

$$
U_{t}=e^{i t T}=\int_{\mathbb{R}} e^{i t \lambda} d E_{\lambda}
$$

The adjoint becomes

$$
U_{t}^{*}=e^{-i t T}=\int_{\mathbb{R}} e^{-i t \lambda} d E_{\lambda}
$$

We compute the product by multiplying the integrands pointwise: $e^{i t \lambda} e^{-i t \lambda}=1$ and integrating: $U_{t} U_{t}^{*}=U_{t}^{*} U_{t}=\int_{\mathbb{R}} d E_{\lambda}=I$. Similarly $U_{s} U_{t}=\int_{\mathbb{R}} e^{i s \lambda} e^{i t \lambda} d E_{\lambda}=\int_{\mathbb{R}} e^{i(s+t) \lambda} d E_{\lambda}=U_{s+t}$. Finally, to compute the derivative consider

$$
\frac{U_{s}-U_{t}}{s-t}=\int_{\mathbb{R}} \frac{e^{i s \lambda}-e^{i t \lambda}}{s-t} d E_{\lambda}
$$

and let $s \rightarrow t$. Then the integrand converges to the derivative $i \lambda$. Moreover the convergence is uniform, so we can take the limit inside the integral and get $d U_{t} / d t=i T U_{t}$. (The factor i was missing from the problem statement.)

