Solution set 1

to some problems given for TMA4230 Functional analysis
2005-02-03

Problem 4.2.3. The task is to show that $p(x)=\varlimsup_{n \rightarrow \infty} x_{n}$ is a sublinear functional on the real version of ℓ^{∞}. Remember the definition $\overline{\lim }_{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \sup _{k \geq n} x_{k}$.

First, assuming $\alpha \geq 0$ we find

$$
p(\alpha x)=\varlimsup_{n \rightarrow \infty} \alpha x_{n}=\lim _{n \rightarrow \infty} \sup _{k \geq n} \alpha x_{k}=\lim _{n \rightarrow \infty} \alpha \sup _{k \geq n} x_{k}=\alpha \lim _{n \rightarrow \infty} \sup _{k \geq n} x_{k}=\alpha \varlimsup_{n \rightarrow \infty} \alpha x_{n}=\alpha p(x)
$$

Second, we find

$$
\begin{aligned}
p(x+y) & =\varlimsup_{n \rightarrow \infty} \alpha\left(x_{n}+y_{n}\right)=\lim _{n \rightarrow \infty} \sup _{k \geq n}\left(x_{k}+y_{k}\right) \leq \lim _{n \rightarrow \infty}\left(\sup _{k \geq n} x_{k}+\sup _{k \geq n} y_{k}\right) \\
& =\lim _{n \rightarrow \infty} \sup _{k \geq n} x_{k}+\lim _{n \rightarrow \infty} \sup _{k \geq n} y_{k}=\varlimsup_{n \rightarrow \infty} x_{k}+\varlimsup_{n \rightarrow \infty} y_{k}=p(x)+p(y) .
\end{aligned}
$$

Problem 4.2.4. If p is sublinear then $p(0)=p(0 \cdot 0)=0 p(0)=0 .{ }^{1}$ Next, $p(0)=p(x+(-x)) \leq p(x)+p(-x)$. Substituting $p(0)=0$ and subtractin $p(x)$ we get $-p(x) \leq p(-x)$.

Problem 4.2.5. Let $x, y \in M$. I.e., $p(x) \leq \gamma$ and $p(y) \leq \gamma$. Assume $0 \leq \alpha \leq 1$. Then

$$
p(\alpha x+(1-\alpha) y) \leq p(\alpha x)+p((1-\alpha) y)=\alpha p(x)+(1-\alpha) p(y) \leq \alpha \gamma+(1-\alpha) \gamma=\gamma
$$

so that $\alpha x+(1-\alpha) y \in M$. The requirement $\gamma>0$ in the problem is in fact not needed.
Problem 4.2.10. To show $-p(-x) \leq \tilde{f}(x) \leq p(x)$ where \tilde{f} is linear and p is sublinear, it is enough to show $\tilde{f}(x) \leq p(x)$ for all x. For then we must also have $f(-x) \leq p(-x)$, which after multiplication with -1 becomes $f(x) \geq-p(-x)$.

To obtain the required \tilde{f}, then, it is enough to start with the zero functional $f(0)=0$ on the trivial subspace $\{0\}$. It obviously satisfies $f(x) \leq p(x)$ for $x \in\{0\}$, so by the Hahn-Banach theorem it has an extension \tilde{f} satisfying $\tilde{f}(x) \leq p(x)$ for all x.
Remark. When applied to the example of problem 4.2.3, this shows the existence of a linear functional \tilde{f} on ℓ^{∞} so that

$$
\varliminf_{x \rightarrow \infty} x_{n} \leq \tilde{f}(x) \leq \varlimsup_{x \rightarrow \infty} x_{n} \quad\left(x \in \ell^{\infty}\right)
$$

Such a linear functional is impossible to describe explicitly. However, if you are given a free ultrafilter \mathcal{U} on the natural numbers (another object with no explicit description), then one can construct a linear functional \tilde{f} satisfying the above inequalities by

$$
\tilde{f}(x)=\lim _{n \rightarrow \mathcal{U}} x_{n} \quad\left(x \in \ell^{\infty}\right)
$$

If this remark makes no sense to you right now, don't worry about it. It will make sense later.
Problem 4.3.3. (We drop the tilde on \tilde{f}.) We are given a real linear functional f on a complex vector space X, satisfying $f(i x)=i f(x)$ for every $x \in X$. The task is to show that f is in fact complex linear.

In other words, we must show that $f(\gamma x)=\gamma f(x)$ for complex γ. Write $\gamma=\alpha+i \beta$ with α and β real. Using the real linearity of f together with the given identity $f(i x)=i f(x)$ we find

$$
f(\gamma x)=f(\alpha x+i \beta x)=f(\alpha x)+f(i \beta x)=f(\alpha x)+i f(\beta x)=\alpha f(x)+i \beta f(x)=\gamma f(x)
$$

Problem 4.3.11. Assume, on the contrary, that $x \neq y$. Create a linear functional f on the one-dimensional space spanned by $x-y$ so that $f(x-y)=1$. Then f is bounded. ${ }^{2}$ Thus by Hahn-Banach there is a bounded extension \tilde{f} on X. Since $\tilde{f}(x-y)=f(x-y)=1, \tilde{f}(x) \neq \tilde{f}(y)$, which contradicts the assumption that no bounded linear functional can tell the difference between x and y.

[^0]
[^0]: ${ }^{1}$ Watch out: Some zeros in that calculation signify the scalar 0, whereas others stand for the zero vector.
 ${ }^{2} A n y$ linear functional on a finite-dimensional space is bounded. But of course, we can easily compute $\|f\|=1 /\|x-y\|$.

