Solution set 2

to some problems given for TMA4230 Functional analysis
2005-02-20

Problem 4.5.5. The short version: $\left((S T)^{*} f\right)(x)=f(S T x)=\left(S^{*} f\right)(T x)=\left(T^{*}\left(S^{*} f\right)\right)(x)=\left(\left(T^{*} S^{*}\right) f\right)(x)$. But perhaps it is more instructive to note that the definition of the adjoint can be written $S^{*} f=f \circ S$, where - denotes the composition of functions. (When we write $S T$, that is really short for $S \circ T$.) So the identity we are asked to show is nothing but the obvious $f \circ(T \circ S)=(f \circ T) \circ S$.

Problem 4.5.8. In our notation, we are asked to prove $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$. More precisely, assuming $T \in$ $B(X, Y)$ is invertible, T^{*} is also invertible, with inverse $\left(T^{-1}\right)^{*}$.

But equation (11) says $(S T)^{*}=S^{*} T^{*}$. Apply with $S=T^{-1}$ to get $\left(T^{-1}\right)^{*} T^{*}=I^{*}=I$. And apply that with T and T^{-1} interchanged, to get $T^{*}\left(T^{-1}\right)^{*}=I$. Together, these two show that T^{*} and $\left(T^{-1}\right)^{*}$ are each other's inverses.

Problem 4.5.9. Note that any set and its closure have the same annihilator: Just recall that the null space of any bounded linear functional is closed. So what we are asked to prove is just ${ }^{1}$

$$
\mathcal{R}(T)^{\perp}=\mathcal{N}\left(T^{*}\right)
$$

Now, if $f \in Y^{*}$ then ${ }^{2}$

$$
\begin{array}{rlr}
f \in \mathcal{R}(T)^{\perp} & \Leftrightarrow f(T x)=0 \quad \forall x \in X \\
& \Leftrightarrow\left(T^{*} f\right)(x)=0 \quad \forall x \in X \\
& \Leftrightarrow T^{*} f=0 & \\
& \Leftrightarrow f \in \mathcal{N}(T) . &
\end{array}
$$

Problem 4.5.10. Take a typical element $T x$ of $\mathcal{R}(T)$, where $x \in X$. We need to show that ${ }^{3} T x \in \mathcal{N}\left(T^{*}\right)_{\perp}$. Thus, we take $f \in \mathcal{N}\left(T^{*}\right)$, and must prove that $f(T x)=0$. But then $f(T x)=\left(T^{*} f\right)(x)=0$ since $T^{*} f=0$.

Problem 4.7.7. This problem just states the contrapositive ${ }^{4}$ of the uniform boundedness theorem. So there really is nothing to do here. (But it is useful to have the theorem in this form.)

Problem 4.7.8. Using the notation (almost) ${ }^{5}$ introduced in the problem, if $x \in X$ with $x_{j}=0$ when $j \geq J$, then $f_{n}(x)=0$ if $n>J$, otherwise $\left|f_{n}(x)\right|=n\left|x_{j}\right| \leq J\|x\|_{\infty}$. So the family $\left(f_{n}\right)_{n=1}^{\infty}$ is pointwise bounded. However, it is not uniformly bounded, for $\left\|f_{n}\right\|=n$.

Extra: Prove that a closed subspace of a reflexive space is reflexive.
Let X be a reflexive space and $Y \subseteq X$ a closed subspace. Assume $\eta \in Y^{* *}$. Define $\xi \in X^{* *}$ by setting

$$
\xi(f)=\eta\left(\left.f\right|_{Y}\right) \quad\left(f \in X^{*}\right)
$$

Since X is reflexive, the functional ξ is really of the form $f \mapsto f(x)$ for some $x \in X$. So the above definition becomes

$$
\eta\left(\left.f\right|_{Y}\right)=f(x) \quad\left(f \in X^{*}\right)
$$

We claim that $x \in Y$. For if $x \notin Y$, there is a bounded linear functional on X with $f \mid Y=0$ and $f(x) \neq 0$ (because Y is closed, see Lemma 4.6-7). But this is impossible since then $0 \neq f(x)=\eta\left(\left.f\right|_{Y}\right)=\eta(0)=0$.

So we now write

$$
\eta(g)=g(x) \quad\left(g=\left.f\right|_{Y}, f \in X^{*}\right)
$$

But, by the Hahn-Banach theorem, every bounded linear functional on Y can be written $\left.f\right|_{Y}$ with $f \in X^{*}$. Thus $\eta(g)=g(x)$ for all $g \in Y^{*}$, where $x \in Y$. This proves that Y is reflexive.

[^0]
[^0]: ${ }^{1}$ Recall that I write M^{\perp} for the annihilator, where Kreyszig writes M^{a}.
 ${ }^{2} \forall$ is short for "for all".
 ${ }^{3}$ What Kreyszig calls the annihilator ${ }^{a} B$, I prefer to call the preannihilator and write as B_{\perp} (the annihilator of a subset of X^{*} is contained in $\left.X^{* *}\right)$.
 ${ }^{4}$ The contrapositive of a statement on the form "if A then B " is the equivalent statement "if not B then not A".
 ${ }^{5} \mathrm{I}$ dislike the convention of using different letters for a vector and its components, as in $x=\left(\xi_{j}\right)$. There aren't enough letters in the alphabet, and this is wasteful.

