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Exercise B.1. I will not write up the proof that dp is a metric. I gave so many hints, the rest is just
elementary calculus.

Now, let f be a linear functional on Lp, where 0 < p < 1. If f is continuous then (picking ε = 1)
there is some δ > 0 so that dp(x, 0) < δ ⇒ |f(x)| < 1. In other words, ‖x‖p < δ1/p ⇒ |f(x)| < 1. Thus
‖x‖p < 1 ⇒ |f(x)| < δ−1/p, so f is bounded. Conversely, if f is bounded, say ‖x‖p < 1 ⇒ |f(x)| < M , then
in a similar way we find dp(x, 0) < (ε/M)p ⇒ |f(x)| < ε, so f is continuous at 0. Since the metric dp is
translation invariant (dp(x + z, y + z) = d(x, y)), it follows that f is continuous everywhere.

Now let f be a nonzero continuous linear functional on Lp. As remarked in the problem, we may replace
f by a multiple of itself and so assume

sup
‖u‖p=1

|f(u)| = 1. (1)

(At the outset, the supremum is finite because f is bounded, and it is positive because f is nonzero.)
Let u ∈ Lp with ‖u‖p = 1. If u = u1 + u2 and u1u2 = 0, that means there is a measurable subset E of

[0, 1] so that u2 is zero on E and u1 is zero on Ec = [0, 1] \ E. Thus

‖u‖p
p =

∫ 1

0

|u|p dx =
∫

E

|u|p dx +
∫

Ec

|u|p dx =
∫

E

|u1|p dx +
∫

Ec

|u2|p dx

=
∫ 1

0

|u1|p dx +
∫ 1

0

|u2|p dx = ‖u1‖p
p + ‖u2‖p

p.

In order to get ‖u1‖p
p = ‖u2‖p

p = 1
2 all we need is to determine E so that

∫
E
|u|p dx = 1

2 . But just pick E = [0, t],
notice that then the integral is a continuous function of t which increases from 0 to 1, and use the intermediate
value theorem.

Thus, for k = 1, 2 we find ‖21/puk‖p
p = 1 so that |21/pf(uk)| ≤ 1. Thus |f(u)| ≤ |f(u1)| + |f(u2)| ≤

2−1/p + 2−1/p = 21−1/p. Since 0 < p < 1 then 1− 1/p < 0, so 21−1/p < 1. But then this contradicts (1).

Exercise B.2. First, let X be an ordered vector space with X+ = {x ∈ X : x ≥ 0}.
Then 0 ∈ X+ because 0 ≥ 0. Given a scalar c ≥ 0 and vector x ∈ X+, we find cx ∈ X+ because c ≥ 0 and

x ≥ 0 imply cx ≥ c0 = 0.
If x ∈ X+ ∩ (−X+) then x ≥ 0 and −x ≥ 0. Adding x to the latter inequality we get 0 ≥ x, and x = 0

follows.
If x, y ∈ X+ then we can add y to x ≥ 0 to get x+y ≥ y. Since also y ≥ 0 we get x+y ≥ 0, so x+y ∈ X+.
To show that X+ is convex, apply the previous result to tx and (1− t)y, where t ∈ [0, 1].
And finally, assuming convexity and x, y ∈ X+, we find 1

2 (x + y) ∈ X+ by convexity. Multiply by 2 to
conclude x + y ∈ X+.

Now let X+ be a proper convex cone in X, and define x ≤ y ⇔ y − x ∈ X+. Then x ≤ x becuse 0 ∈ X+,
x ≤ y and y ≤ x imply x = y because x − y ∈ X+ ∩ (−X+) = {0}, and x ≤ y ≤ z implies x ≤ z because
z − x = (z − y) + (y − x) with z − y ∈ X+ and y − x ∈ X+. So far, we have shown that ≤ is a partial order.
If x ≤ y and c ≥ 0 then cy − cx = c(y − x) ∈ X+, so cx ≤ cy. Also (y + v) − (x + v) = y − x ∈ X+, so
x + v ≤ y + v.

Exercise B.3. First, if −ce ≤ x ≤ ce then c ≥ 0, since e ∈ X+. Thus ‖x‖ ≥ 0.
If ‖x‖ = 0 then x ≤ ce for all c > 0. Thus c−1x ≤ e for all c > 0, and so x ≤ 0 by the second order unit

axiom. Similarly, x ≥ −ce for all c > 0, or −cx ≤ e for all c > 0, which implies −x ≤ 0, so x ≥ 0. We conclude
x = 0 when ‖x‖ = 0.

When −ce ≤ x ≤ ce and −de ≤ y ≤ de we find −(c + d)e ≤ x + y ≤ (c + d)e. Taking the infimum over all
c and d we get ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Multiplying the inequality −ce ≤ x ≤ ce by a real number t 6= 0 we find the equivalent −cte ≤ tx ≤ cte
(even if t < 0). Thus ‖tx‖ = |t|‖x‖ follows.

We have shown that ‖·‖ is a norm.
Clearly, we have x ≤ ce for every c > ‖x‖. Write this inequality as x − ‖x‖e ≤ (c − ‖x‖)e, so that

x − ‖x‖e ≤ te for all t > 0. Thus x − ‖x‖e ≤ 0 by the second order unit axiom. In other words, x ≤ ‖x‖e.
The inequality x ≥ −‖x‖e follows in a similar way, or more simply by replacing x by −x.



Exercise B.4. From the definition of the state space we immediately get x ≤ y ⇒ f(x) ≤ f(y), when f ∈ S.
Thus −‖x‖f(e) ≤ f(x) ≤ ‖x‖f(e) follows, and therefore |f(x)| ≤ ‖x‖ since f(e) = 1. Thus ‖f‖ ≤ 1. But also
‖f‖ ≥ 1 because f(e) = 1 = ‖e‖. Thus S is a subset of the closed unit ball of X∗. It is a weakly* closed
subset, because of the way it is defined in terms of weakly* continuous functionals f 7→ f(x) with x ∈ X.
Since the closed unit ball of X∗ is weakly* compact, then so is the weakly* closed subset S.

Exercise B.5. Certainly, if x ∈ X and x ≥ 0 then f(x) ≥ 0 for all f ∈ S, by the very definition of S.
Assume now instead x 6≥ 0, but still f(x) ≥ 0 for all f ∈ S. We shall use the Hahn–Banach separation

theorem to separate x from X+. Actually, we need a little bit more: We really should separate a neighbourhood
of x from X+. Certainly, we can find some ε > 0 so that x + εe /∈ X+. For otherwise −x ≤ εe for every ε > 0,
which would imply −x ≤ 0, i.e., x ≥ 0. So now the ε-ball Bε(x) = {z : x − εe ≤ z ≤ x + εe} is disjoint from
X+, and x is an interior point in it. Thus the Hahn–Banach separation theorem guarantees the existence of
a constant c with f(x) < c ≤ f(w) for every w ∈ X+.

Now c ≤ 0 because 0 ∈ X+. If f(w) < 0 for some w ∈ X+ then tw ∈ X+ for all t > 0, and f(tw) =
tf(w) < c if t is large enough. This contradiction shows that f(w) ≥ 0 for all w ∈ X+, so we might as well
pick c = 0.

Now f(e) > 0, for we find −‖z‖f(e) ≤ f(z) ≤ ‖z‖f(e) for all z, so if f(e) = 0 then f would be the
zero functional. Replace f by f/f(e). Then f(e) = 1, and it follows that f ∈ S. But this contradicts the
assumption that f(x) ≥ 0 for all f ∈ S.

Exercise B.6. The hint was perhaps stated in too complicated a way. Better: Assume that x 6≤ ce whenever
c < ‖x‖. (If not, it must be true of −x instead, so we replace x by −x.) Thus, whenever c < ‖x‖ we find
ce − x 6≥ 0, so there is some f ∈ S with f(ce − x) < 0, i.e., f(x) > c. Therefore supf∈S |f(x)| ≥ ‖x‖. The
opposite inequality is obvious.

Exercise B.7. Clearly, co(S ∪−S) is contained in the (closed) unit ball of X∗. Moreover, since S is weakly*
compact and convex, then so is co(S ∪ −S): For this is the image of the compact set [0, 1]× S × S under the
continuous map (t, f, g) 7→ tf + (1− t)g.

If co(S ∪ −S) is not the whole unit ball of X∗, pick h ∈ X∗ with ‖h‖ ≤ 1 and h /∈ co(S ∪ −S). By
Hahn–Banach separation there is a weakly* continuous functional separating h from co(S ∪ −S). But this
then belongs to X. I.e., there is some x ∈ X and a constant c so that h(x) > c ≥ f(x) for all f ∈ co(S ∪−S).
Then c ≥ 0, and |f(x)| ≤ c for all f ∈ S. By the previous problem, then ‖x‖ ≤ c. But this contradicts the
inequalities ‖h‖ ≤ 1, ‖x‖ ≤ 1, and h(x) > c.
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