Solution set 5

to some problems given for TMA4230 Functional analysis
2005-04-15

Exercise B.1. I will not write up the proof that d_{p} is a metric. I gave so many hints, the rest is just elementary calculus.

Now, let f be a linear functional on L^{p}, where $0<p<1$. If f is continuous then (picking $\varepsilon=1$) there is some $\delta>0$ so that $d_{p}(x, 0)<\delta \Rightarrow|f(x)|<1$. In other words, $\|x\|_{p}<\delta^{1 / p} \Rightarrow|f(x)|<1$. Thus $\|x\|_{p}<1 \Rightarrow|f(x)|<\delta^{-1 / p}$, so f is bounded. Conversely, if f is bounded, say $\|x\|_{p}<1 \Rightarrow|f(x)|<M$, then in a similar way we find $d_{p}(x, 0)<(\varepsilon / M)^{p} \Rightarrow|f(x)|<\varepsilon$, so f is continuous at 0 . Since the metric d_{p} is translation invariant $\left(d_{p}(x+z, y+z)=d(x, y)\right)$, it follows that f is continuous everywhere.

Now let f be a nonzero continuous linear functional on L^{p}. As remarked in the problem, we may replace f by a multiple of itself and so assume

$$
\begin{equation*}
\sup _{\|u\|_{p}=1}|f(u)|=1 \tag{1}
\end{equation*}
$$

(At the outset, the supremum is finite because f is bounded, and it is positive because f is nonzero.)
Let $u \in L^{p}$ with $\|u\|_{p}=1$. If $u=u_{1}+u_{2}$ and $u_{1} u_{2}=0$, that means there is a measurable subset E of $[0,1]$ so that u_{2} is zero on E and u_{1} is zero on $E^{c}=[0,1] \backslash E$. Thus

$$
\begin{aligned}
\|u\|_{p}^{p} & =\int_{0}^{1}|u|^{p} d x=\int_{E}|u|^{p} d x+\int_{E^{c}}|u|^{p} d x=\int_{E}\left|u_{1}\right|^{p} d x+\int_{E^{c}}\left|u_{2}\right|^{p} d x \\
& =\int_{0}^{1}\left|u_{1}\right|^{p} d x+\int_{0}^{1}\left|u_{2}\right|^{p} d x=\left\|u_{1}\right\|_{p}^{p}+\left\|u_{2}\right\|_{p}^{p} .
\end{aligned}
$$

In order to get $\left\|u_{1}\right\|_{p}^{p}=\left\|u_{2}\right\|_{p}^{p}=\frac{1}{2}$ all we need is to determine E so that $\int_{E}|u|^{p} d x=\frac{1}{2}$. But just pick $E=[0, t]$, notice that then the integral is a continuous function of t which increases from 0 to 1 , and use the intermediate value theorem.

Thus, for $k=1,2$ we find $\left\|2^{1 / p} u_{k}\right\|_{p}^{p}=1$ so that $\left|2^{1 / p} f\left(u_{k}\right)\right| \leq 1$. Thus $|f(u)| \leq\left|f\left(u_{1}\right)\right|+\left|f\left(u_{2}\right)\right| \leq$ $2^{-1 / p}+2^{-1 / p}=2^{1-1 / p}$. Since $0<p<1$ then $1-1 / p<0$, so $2^{1-1 / p}<1$. But then this contradicts (1).

Exercise B.2. First, let X be an ordered vector space with $X^{+}=\{x \in X: x \geq 0\}$.
Then $0 \in X^{+}$because $0 \geq 0$. Given a scalar $c \geq 0$ and vector $x \in X^{+}$, we find $c x \in X^{+}$because $c \geq 0$ and $x \geq 0$ imply $c x \geq c 0=0$.

If $x \in X^{+} \cap\left(-X^{+}\right)$then $x \geq 0$ and $-x \geq 0$. Adding x to the latter inequality we get $0 \geq x$, and $x=0$ follows.

If $x, y \in X^{+}$then we can add y to $x \geq 0$ to get $x+y \geq y$. Since also $y \geq 0$ we get $x+y \geq 0$, so $x+y \in X^{+}$.
To show that X^{+}is convex, apply the previous result to $t x$ and $(1-t) y$, where $t \in[0,1]$.
And finally, assuming convexity and $x, y \in X^{+}$, we find $\frac{1}{2}(x+y) \in X^{+}$by convexity. Multiply by 2 to conclude $x+y \in X^{+}$.

Now let X^{+}be a proper convex cone in X, and define $x \leq y \Leftrightarrow y-x \in X^{+}$. Then $x \leq x$ becuse $0 \in X^{+}$, $x \leq y$ and $y \leq x$ imply $x=y$ because $x-y \in X^{+} \cap\left(-X^{+}\right)=\{0\}$, and $x \leq y \leq z$ implies $x \leq z$ because $z-x=(z-y)+(y-x)$ with $z-y \in X^{+}$and $y-x \in X^{+}$. So far, we have shown that \leqis a partial order. If $x \leq y$ and $c \geq 0$ then $c y-c x=c(y-x) \in X^{+}$, so $c x \leq c y$. Also $(y+v)-(x+v)=y-x \in X^{+}$, so $x+v \leq y+v$.

Exercise B.3. First, if $-c e \leq x \leq c e$ then $c \geq 0$, since $e \in X^{+}$. Thus $\|x\| \geq 0$.
If $\|x\|=0$ then $x \leq c e$ for all $c>0$. Thus $c^{-1} x \leq e$ for all $c>0$, and so $x \leq 0$ by the second order unit axiom. Similarly, $x \geq-c e$ for all $c>0$, or $-c x \leq e$ for all $c>0$, which implies $-x \leq 0$, so $x \geq 0$. We conclude $x=0$ when $\|x\|=0$.

When $-c e \leq x \leq c e$ and $-d e \leq y \leq d e$ we find $-(c+d) e \leq x+y \leq(c+d) e$. Taking the infimum over all c and d we get $\|x+y\| \leq\|x\|+\|y\|$.

Multiplying the inequality $-c e \leq x \leq c e$ by a real number $t \neq 0$ we find the equivalent $-c t e \leq t x \leq c t e$ (even if $t<0$). Thus $\|t x\|=|t|\|x\|$ follows.

We have shown that $\|\cdot\|$ is a norm.
Clearly, we have $x \leq c e$ for every $c>\|x\|$. Write this inequality as $x-\|x\| e \leq(c-\|x\|) e$, so that $x-\|x\| e \leq t e$ for all $t>0$. Thus $x-\|x\| e \leq 0$ by the second order unit axiom. In other words, $x \leq\|x\| e$. The inequality $x \geq-\|x\| e$ follows in a similar way, or more simply by replacing x by $-x$.

Exercise B.4. From the definition of the state space we immediately get $x \leq y \Rightarrow f(x) \leq f(y)$, when $f \in S$. Thus $-\|x\| f(e) \leq f(x) \leq\|x\| f(e)$ follows, and therefore $|f(x)| \leq\|x\|$ since $f(e)=1$. Thus $\|f\| \leq 1$. But also $\|f\| \geq 1$ because $f(e)=1=\|e\|$. Thus S is a subset of the closed unit ball of X^{*}. It is a weakly* closed subset, because of the way it is defined in terms of weakly* continuous functionals $f \mapsto f(x)$ with $x \in X$. Since the closed unit ball of X^{*} is weakly* compact, then so is the weakly* closed subset S.

Exercise B.5. Certainly, if $x \in X$ and $x \geq 0$ then $f(x) \geq 0$ for all $f \in S$, by the very definition of S.
Assume now instead $x \nsupseteq 0$, but still $f(x) \geq 0$ for all $f \in S$. We shall use the Hahn-Banach separation theorem to separate x from X^{+}. Actually, we need a little bit more: We really should separate a neighbourhood of x from X^{+}. Certainly, we can find some $\varepsilon>0$ so that $x+\varepsilon e \notin X^{+}$. For otherwise $-x \leq \varepsilon e$ for every $\varepsilon>0$, which would imply $-x \leq 0$, i.e., $x \geq 0$. So now the ε-ball $B_{\varepsilon}(x)=\{z: x-\varepsilon e \leq z \leq x+\varepsilon e\}$ is disjoint from X^{+}, and x is an interior point in it. Thus the Hahn-Banach separation theorem guarantees the existence of a constant c with $f(x)<c \leq f(w)$ for every $w \in X^{+}$.

Now $c \leq 0$ because $0 \in X^{+}$. If $f(w)<0$ for some $w \in X^{+}$then $t w \in X^{+}$for all $t>0$, and $f(t w)=$ $t f(w)<c$ if t is large enough. This contradiction shows that $f(w) \geq 0$ for all $w \in X^{+}$, so we might as well pick $c=0$.

Now $f(e)>0$, for we find $-\|z\| f(e) \leq f(z) \leq\|z\| f(e)$ for all z, so if $f(e)=0$ then f would be the zero functional. Replace f by $f / f(e)$. Then $f(e)=1$, and it follows that $f \in S$. But this contradicts the assumption that $f(x) \geq 0$ for all $f \in S$.

Exercise B.6. The hint was perhaps stated in too complicated a way. Better: Assume that $x \not \leq c e$ whenever $c<\|x\|$. (If not, it must be true of $-x$ instead, so we replace x by $-x$.) Thus, whenever $c<\|x\|$ we find $c e-x \nsupseteq 0$, so there is some $f \in S$ with $f(c e-x)<0$, i.e., $f(x)>c$. Therefore $\sup _{f \in S}|f(x)| \geq\|x\|$. The opposite inequality is obvious.

Exercise B.7. Clearly, $\operatorname{co}(S \cup-S)$ is contained in the (closed) unit ball of X^{*}. Moreover, since S is weakly* compact and convex, then so is $\operatorname{co}(S \cup-S)$: For this is the image of the compact set $[0,1] \times S \times S$ under the continuous map $(t, f, g) \mapsto t f+(1-t) g$.

If $\operatorname{co}(S \cup-S)$ is not the whole unit ball of X^{*}, pick $h \in X^{*}$ with $\|h\| \leq 1$ and $h \notin \operatorname{co}(S \cup-S)$. By Hahn-Banach separation there is a weakly* continuous functional separating h from $\operatorname{co}(S \cup-S)$. But this then belongs to X. I.e., there is some $x \in X$ and a constant c so that $h(x)>c \geq f(x)$ for all $f \in \operatorname{co}(S \cup-S)$. Then $c \geq 0$, and $|f(x)| \leq c$ for all $f \in S$. By the previous problem, then $\|x\| \leq c$. But this contradicts the inequalities $\|h\| \leq 1,\|x\| \leq 1$, and $h(x)>c$.

