Solution set 5 to some problems given for TMA4230 Functional analysis

2005-04-15

Exercise B.1. I will not write up the proof that d_p is a metric. I gave so many hints, the rest is just elementary calculus.

Now, let f be a linear functional on L^p , where 0 . If <math>f is continuous then (picking $\varepsilon = 1$) there is some $\delta > 0$ so that $d_p(x,0) < \delta \Rightarrow |f(x)| < 1$. In other words, $||x||_p < \delta^{1/p} \Rightarrow |f(x)| < 1$. Thus $||x||_p < 1 \Rightarrow |f(x)| < \delta^{-1/p}$, so f is bounded. Conversely, if f is bounded, say $||x||_p < 1 \Rightarrow |f(x)| < M$, then in a similar way we find $d_p(x,0) < (\varepsilon/M)^p \Rightarrow |f(x)| < \varepsilon$, so f is continuous at 0. Since the metric d_p is translation invariant $(d_p(x+z,y+z) = d(x,y))$, it follows that f is continuous everywhere.

Now let f be a nonzero continuous linear functional on L^p . As remarked in the problem, we may replace f by a multiple of itself and so assume

$$\sup_{\|u\|_{p}=1} |f(u)| = 1.$$
(1)

(At the outset, the supremum is finite because f is bounded, and it is positive because f is nonzero.)

Let $u \in L^p$ with $||u||_p = 1$. If $u = u_1 + u_2$ and $u_1u_2 = 0$, that means there is a measurable subset E of [0,1] so that u_2 is zero on E and u_1 is zero on $E^c = [0,1] \setminus E$. Thus

$$\begin{aligned} \|u\|_{p}^{p} &= \int_{0}^{1} |u|^{p} \, dx = \int_{E} |u|^{p} \, dx + \int_{E^{c}} |u|^{p} \, dx = \int_{E} |u_{1}|^{p} \, dx + \int_{E^{c}} |u_{2}|^{p} \, dx \\ &= \int_{0}^{1} |u_{1}|^{p} \, dx + \int_{0}^{1} |u_{2}|^{p} \, dx = \|u_{1}\|_{p}^{p} + \|u_{2}\|_{p}^{p}. \end{aligned}$$

In order to get $||u_1||_p^p = ||u_2||_p^p = \frac{1}{2}$ all we need is to determine E so that $\int_E |u|^p dx = \frac{1}{2}$. But just pick E = [0, t], notice that then the integral is a continuous function of t which increases from 0 to 1, and use the intermediate value theorem.

Thus, for k = 1, 2 we find $||2^{1/p}u_k||_p^p = 1$ so that $|2^{1/p}f(u_k)| \le 1$. Thus $|f(u)| \le |f(u_1)| + |f(u_2)| \le 2^{-1/p} + 2^{-1/p} = 2^{1-1/p}$. Since 0 then <math>1 - 1/p < 0, so $2^{1-1/p} < 1$. But then this contradicts (1).

Exercise B.2. First, let X be an ordered vector space with $X^+ = \{x \in X : x \ge 0\}$.

Then $0 \in X^+$ because $0 \ge 0$. Given a scalar $c \ge 0$ and vector $x \in X^+$, we find $cx \in X^+$ because $c \ge 0$ and $x \ge 0$ imply $cx \ge c0 = 0$.

If $x \in X^+ \cap (-X^+)$ then $x \ge 0$ and $-x \ge 0$. Adding x to the latter inequality we get $0 \ge x$, and x = 0 follows.

If $x, y \in X^+$ then we can add y to $x \ge 0$ to get $x + y \ge y$. Since also $y \ge 0$ we get $x + y \ge 0$, so $x + y \in X^+$. To show that X^+ is convex, apply the previous result to tx and (1 - t)y, where $t \in [0, 1]$.

And finally, assuming convexity and $x, y \in X^+$, we find $\frac{1}{2}(x+y) \in X^+$ by convexity. Multiply by 2 to conclude $x + y \in X^+$.

Now let X^+ be a proper convex cone in X, and define $x \le y \Leftrightarrow y - x \in X^+$. Then $x \le x$ becuse $0 \in X^+$, $x \le y$ and $y \le x$ imply x = y because $x - y \in X^+ \cap (-X^+) = \{0\}$, and $x \le y \le z$ implies $x \le z$ because z - x = (z - y) + (y - x) with $z - y \in X^+$ and $y - x \in X^+$. So far, we have shown that \le is a partial order. If $x \le y$ and $c \ge 0$ then $cy - cx = c(y - x) \in X^+$, so $cx \le cy$. Also $(y + v) - (x + v) = y - x \in X^+$, so $x + v \le y + v$.

Exercise B.3. First, if $-ce \le x \le ce$ then $c \ge 0$, since $e \in X^+$. Thus $||x|| \ge 0$.

If ||x|| = 0 then $x \le ce$ for all c > 0. Thus $c^{-1}x \le e$ for all c > 0, and so $x \le 0$ by the second order unit axiom. Similarly, $x \ge -ce$ for all c > 0, or $-cx \le e$ for all c > 0, which implies $-x \le 0$, so $x \ge 0$. We conclude x = 0 when ||x|| = 0.

When $-ce \le x \le ce$ and $-de \le y \le de$ we find $-(c+d)e \le x+y \le (c+d)e$. Taking the infimum over all c and d we get $||x+y|| \le ||x|| + ||y||$.

Multiplying the inequality $-ce \le x \le ce$ by a real number $t \ne 0$ we find the equivalent $-cte \le tx \le cte$ (even if t < 0). Thus ||tx|| = |t|||x|| follows.

We have shown that $\|\cdot\|$ is a norm.

Clearly, we have $x \leq ce$ for every c > ||x||. Write this inequality as $x - ||x||e \leq (c - ||x||)e$, so that $x - ||x||e \leq te$ for all t > 0. Thus $x - ||x||e \leq 0$ by the second order unit axiom. In other words, $x \leq ||x||e$. The inequality $x \geq -||x||e$ follows in a similar way, or more simply by replacing x by -x.

Exercise B.4. From the definition of the state space we immediately get $x \le y \Rightarrow f(x) \le f(y)$, when $f \in S$. Thus $-\|x\|f(e) \le f(x) \le \|x\|f(e)$ follows, and therefore $|f(x)| \le \|x\|$ since f(e) = 1. Thus $\|f\| \le 1$. But also $\|f\| \ge 1$ because $f(e) = 1 = \|e\|$. Thus S is a subset of the closed unit ball of X^* . It is a weakly* closed subset, because of the way it is defined in terms of weakly* continuous functionals $f \mapsto f(x)$ with $x \in X$. Since the closed unit ball of X^* is weakly* compact, then so is the weakly* closed subset S.

Exercise B.5. Certainly, if $x \in X$ and $x \ge 0$ then $f(x) \ge 0$ for all $f \in S$, by the very definition of S.

Assume now instead $x \geq 0$, but still $f(x) \geq 0$ for all $f \in S$. We shall use the Hahn-Banach separation theorem to separate x from X^+ . Actually, we need a little bit more: We really should separate a neighbourhood of x from X^+ . Certainly, we can find some $\varepsilon > 0$ so that $x + \varepsilon e \notin X^+$. For otherwise $-x \leq \varepsilon e$ for every $\varepsilon > 0$, which would imply $-x \leq 0$, i.e., $x \geq 0$. So now the ε -ball $B_{\varepsilon}(x) = \{z : x - \varepsilon e \leq z \leq x + \varepsilon e\}$ is disjoint from X^+ , and x is an interior point in it. Thus the Hahn-Banach separation theorem guarantees the existence of a constant c with $f(x) < c \leq f(w)$ for every $w \in X^+$.

Now $c \leq 0$ because $0 \in X^+$. If f(w) < 0 for some $w \in X^+$ then $tw \in X^+$ for all t > 0, and f(tw) = tf(w) < c if t is large enough. This contradiction shows that $f(w) \geq 0$ for all $w \in X^+$, so we might as well pick c = 0.

Now f(e) > 0, for we find $-||z||f(e) \le f(z) \le ||z||f(e)$ for all z, so if f(e) = 0 then f would be the zero functional. Replace f by f/f(e). Then f(e) = 1, and it follows that $f \in S$. But this contradicts the assumption that $f(x) \ge 0$ for all $f \in S$.

Exercise B.6. The hint was perhaps stated in too complicated a way. Better: Assume that $x \not\leq ce$ whenever c < ||x||. (If not, it must be true of -x instead, so we replace x by -x.) Thus, whenever c < ||x|| we find $ce - x \geq 0$, so there is some $f \in S$ with f(ce - x) < 0, i.e., f(x) > c. Therefore $\sup_{f \in S} |f(x)| \geq ||x||$. The opposite inequality is obvious.

Exercise B.7. Clearly, $co(S \cup -S)$ is contained in the (closed) unit ball of X^* . Moreover, since S is weakly^{*} compact and convex, then so is $co(S \cup -S)$: For this is the image of the compact set $[0,1] \times S \times S$ under the continuous map $(t, f, g) \mapsto tf + (1-t)g$.

If $co(S \cup -S)$ is not the whole unit ball of X^* , pick $h \in X^*$ with $||h|| \leq 1$ and $h \notin co(S \cup -S)$. By Hahn–Banach separation there is a weakly^{*} continuous functional separating h from $co(S \cup -S)$. But this then belongs to X. I.e., there is some $x \in X$ and a constant c so that $h(x) > c \geq f(x)$ for all $f \in co(S \cup -S)$. Then $c \geq 0$, and $|f(x)| \leq c$ for all $f \in S$. By the previous problem, then $||x|| \leq c$. But this contradicts the inequalities $||h|| \leq 1$, $||x|| \leq 1$, and h(x) > c.