Suggested solutions for the midterm

 given for TMA4230 Functional analysis

 given for TMA4230 Functional analysis}

2006-03-17

Problem 1. If X and Y are Banach spaces and $T: X \rightarrow Y$ is a bounded, surjective map then T is open.

Problem 2. The canonical map $C: X \rightarrow X^{* *}$ is given by $C(x)=\tilde{x}$, where $\tilde{x}(f)=f(x)$ for $f \in X^{*} . X$ is called reflexive if C maps X onto $X^{* *}$.
c_{0} is not reflexive: Its second dual can be identified with ℓ^{∞}, and the canonical map is just the identity (or inclusion) map.

Problem 3. We find $\left\||u|^{r}\right\|_{p / r}^{p / r}=\int_{\Omega}|u|^{r(p / r)} d \mu=\|u\|_{p}^{p}$. and similarly $\left\||v|^{r}\right\|_{q / r}^{q / r}=\|v\|_{q}^{q}$. Also p / r and q / r are conjugate exponents $(1 /(p / r)+1 /(q / r)=r / p+r / q=1)$, so Hölder's inequality yields

$$
\int_{\Omega}|u|^{r}|\nu|^{r} d \mu \leq\left\||u|^{r}\right\|_{p / r}\left\||\nu|^{r}\right\|_{q / r}=\|u\|_{p}^{r}\|\nu\|_{q}^{r} .
$$

Taking the $1 / r$ power of this we get $\|u v\|_{r} \leq\|u\|_{p}\|v\|_{q}$. Since this is finite, $u v \in L^{r}(\Omega)$. The inequality also shows that the mapping $u \mapsto u v$ is bounded with norm $\leq\|v\|_{q}$. (This is actually an equality, but I didn't ask about that.)

Problem 4. The assumption $A x \in \ell^{\infty}$ implies $\left|f_{j}(x)\right| \leq\|A x\|_{\infty}$ for each $x \in X$. Thus the family $\left(f_{j}\right)$ of functionals is pointwise bounded, and hence uniformly bounded by the Banach-Steinhaus theorem (uniform boundedness principle). To use the theorem, we also need to know that each f_{j} is bounded, but this follows from $\sum_{k}\left|a_{j k}\right|<\infty$. In fact, $\left\|f_{j}\right\|=\sum_{k}\left|a_{j k}\right|$, by the standard duality: ℓ^{1} is the dual of c_{0}. So our conclusion so far is

$$
\sup _{j=1,2, \ldots .}\left\|f_{j}\right\|=\sup _{j=1,2, \ldots .} \sum_{k}\left|a_{j k}\right|<\infty
$$

It follows that

$$
\|A x\|_{\infty} \leq \sup _{j=1,2, . . .}\left\|f_{j}\right\|\|x\|_{\infty}
$$

for all $x \in c_{0}$, so that

$$
\|A\| \leq \sup _{j=1,2, \ldots}\left\|f_{j}\right\|=\sup _{j=1,2, \ldots . .} \sum_{k}\left|a_{j k}\right|
$$

This inequality is actually an equality! This follows trivially from

$$
\|A\| \geq\left\|f_{j}\right\| \quad \text { for all } j
$$

which in its turn follows from

$$
\|A x\|_{\infty} \geq\left|(A x)_{j}\right|=\left|f_{j}(x)\right|
$$

and taking the supremum over all x with $\|x\|_{\infty}=1$.
Alternatively, to prove that A is bounded you can use the closed graph theorem: It is not hard to show that the graph of A is closed, even without the assumption that it maps c_{0} into ℓ^{∞}. For the graph of A is the intersection of all the sets $\left\{(x, y) \in c_{0} \times \ell^{\infty}: f_{j}(x)=y_{j}\right\}$ for $j=1,2, \ldots$, and they are all closed since f_{j} is bounded (and therefore continuous).

