Suggested solutions for the midterm

given for TMA4230 Functional analysis

2006-03-17

Problem 1. If X and Y are Banach spaces and $T: X \to Y$ is a bounded, surjective map then T is open.

Problem 2. The canonical map $C: X \to X^{**}$ is given by $C(x) = \tilde{x}$, where $\tilde{x}(f) = f(x)$ for $f \in X^*$. *X* is called reflexive if *C* maps *X* onto X^{**} .

 c_0 is not reflexive: Its second dual can be identified with ℓ^{∞} , and the canonical map is just the identity (or inclusion) map.

Problem 3. We find $|||u|^r||_{p/r}^{p/r} = \int_{\Omega} |u|^{r(p/r)} d\mu = ||u||_p^p$ and similarly $|||v|^r||_{q/r}^{q/r} = ||v||_q^q$. Also p/r and q/r are conjugate exponents (1/(p/r) + 1/(q/r) = r/p + r/q = 1), so Hölder's inequality yields

$$\int_{\Omega} |u|^{r} |v|^{r} d\mu \leq ||u|^{r} ||_{p/r} ||v|^{r} ||_{q/r} = ||u||_{p}^{r} ||v||_{q}^{r}$$

Taking the 1/r power of this we get $||uv||_r \le ||u||_p ||v||_q$. Since this is finite, $uv \in L^r(\Omega)$. The inequality also shows that the mapping $u \mapsto uv$ is bounded with norm $\le ||v||_q$. (This is actually an equality, but I didn't ask about that.)

Problem 4. The assumption $Ax \in \ell^{\infty}$ implies $|f_j(x)| \le ||Ax||_{\infty}$ for each $x \in X$. Thus the family (f_j) of functionals is pointwise bounded, and hence uniformly bounded by the Banach–Steinhaus theorem (uniform boundedness principle). To use the theorem, we also need to know that each f_j is bounded, but this follows from $\sum_k |a_{jk}| < \infty$. In fact, $||f_j|| = \sum_k |a_{jk}|$, by the standard duality: ℓ^1 is the dual of c_0 . So our conclusion so far is

$$\sup_{j=1,2,\dots} \|f_j\| = \sup_{j=1,2,\dots} \sum_k |a_{jk}| < \infty$$

It follows that

$$||Ax||_{\infty} \le \sup_{j=1,2,\dots} ||f_j|| ||x||_{\infty}$$

for all $x \in c_0$, so that

$$||A|| \le \sup_{j=1,2,\dots} ||f_j|| = \sup_{j=1,2,\dots} \sum_k |a_{jk}|$$

This inequality is actually an equality! This follows trivially from

$$||A|| \ge ||f_j||$$
 for all j

which in its turn follows from

$$||Ax||_{\infty} \ge |(Ax)_{j}| = |f_{j}(x)|$$

and taking the supremum over all *x* with $||x||_{\infty} = 1$.

Alternatively, to prove that *A* is bounded you can use the closed graph theorem: It is not hard to show that the graph of *A* is closed, even without the assumption that it maps c_0 into ℓ^{∞} . For the graph of *A* is the intersection of all the sets $\{(x, y) \in c_0 \times \ell^{\infty} : f_j(x) = y_j\}$ for j = 1, 2, ..., and they are all closed since f_j is bounded (and therefore continuous).