Exercise set 3 For TMA4230 Functional analysis

2006-04-01

Exercise 3.1. Let *X* and *Y* be topological spaces. Show that a function $f: X \to Y$ is continuous if and only if $f^{-1}(F)$ is closed in *X* for every closed $F \subseteq Y$.

Exercise 3.2. We have defined compactness of *X* in terms of open covers of *X*, which are sets of open subsets of *X* covering *X*.

Instead, consider now a subset *K* of a topological space *X*. Then *K* with the topology inherited from *X* is a topological space in its own right, so we can ask if *K* it compact or not.

If we define an open cover of *K* to be a set of open subsets of *X* whose union contains *K*, prove that *K* is compact if and only if every open cover of *K* has a finite subcover (of *K*). (The point here is that compactness of *K* is defined in terms of open covers of *K*, as consisting of subsets of *K* which are open in the inherited topology.)

Exercise 3.3. Show that any closed subset of a compact space is compact.

Exercise 3.4. Show that any compact subset of a Hausdorff space is closed. (But note: If *X* is the space $\{0, 1\}$ with topology $\{\emptyset, \{0, 1\}\}$ then $\{0\}$ is compact but not closed. Of course, *X* is not Hausdorff either.)

Exercise 3.5. Let X be a set and \mathscr{B} a set of subsets of X. Let \mathscr{B}' be the set of all finite intersections from \mathscr{B} :

$$\mathscr{B}' = \{B_1 \cap \cdots \cap B_n \colon B_1, \dots, B_n \in \mathscr{B}; n = 0, 1, 2, \dots\}$$

with the understanding that $B_1 \cap \cdots \cap B_n = X$ when n = 0. Let \mathcal{T} consist of all possible unions of members of \mathcal{B}' . Show that \mathcal{T} is a topology; in fact, it is the weakest topology containing \mathcal{B} . It is said to be the topology *generated* by \mathcal{B} . Also, \mathcal{B} is said to be a *basis* for T.

Exercise 3.6. Let *X* be a real topological vector space, not necessarily locally convex. Show that the intersection of all convex neighbourhoods of 0 is a (vector) subspace of *X*. Call this space *Z*.

Show that any continuous linear functional on *X* vanishes on *Z* (in other words, if *f* is a continuous linear functional and $z \in Z$ then f(z) = 0.) *Hint*: If *V* is any neighbourhood of 0, then so is αV whenever $\alpha > 0$.

Show that *Z* is closed. In fact, show that if $x \in X \setminus Z$ then there is a convex neighbourhood of *x* that does not meet *Z* (we say two sets meet if they have a nonempty intersection).

Use Hahn–Banach separation to show that, if $x \in X \setminus Z$ then there is a continuous linear functional on X with $f(x) \neq 0$.

Exercise 3.7. Let $0 and let <math>X = L^p[0,1]$: The L^p space on the unit interval with Lebesgue measure. The L^p "norm" is not really a norm in this case, since it fails to satisfy the triangle inequality. Instead, we can make a metric d_p on L^p by

$$d_p(u, v) = ||u - v||_p^p = \int_0^1 |u - v|^p dx.$$

Show that d_p is a metric. *Hint*: It is enough to show $|u+v|^p \le |u|^p + |v^p|$ and then integrate this inequality. Since $|u+v| \le |u| + |v|$, it is sufficient to show the inequality when $u, v \ge 0$. That is, show that $(u+v)^p \le u^p + v^p$ for $u, v \ge 0$. This is an equality for v = 0. Differentiate wrt v.

It can be shown that L^p is complete in this metric, and the topology induced by this metric makes L^p into a topological vector space as well. (You are not expected to show this, but you are welcome to do it anyway.)

Show that the subspace *Z* defined in the previous problem is all of *X*, and conclude from this that the only continuous linear functional on *Z* is the zero functional. *Hint*: If $u \in L^p$ with $||u||_p = 1$, then for any *n* divide [0, 1] into *n* subintervals $[t_{j-1}, t_j]$ so that $\int_{t_{j-1}}^{t_j} |u|^p dt = 1/n$ for each *j*. Then $u = (u_1 + \dots + u_n)/n$ where $u_j = n\chi_{[t_{j-1}, t_j]}u$. Show that $||u_j||_p^p = n^{p-1}$, and derive the desired result from this.