Exercise Set 2

Problem 1

(a) The perturbation expansion of u is given by

$$u = \sum_{n=0}^{\infty} \varepsilon^n u_n.$$

We plug it in to the governing equation

$$u'' + u = 1 + \varepsilon u^2$$

and get

$$\sum_{n=0}^{\infty} \varepsilon^n u_n'' + \sum_{n=0}^{\infty} \varepsilon^n u_n = 1 + \varepsilon (\sum_{n=0}^{\infty} \varepsilon^n u_n)^2$$

or

$$\sum_{n=0}^{\infty} \varepsilon^n (u_n'' + u_n) = 1 + \varepsilon \sum_{i,j=0}^{\infty} \varepsilon^{i+j} u_i u_j.$$

Equaling the terms of order 0, we get

$$u_0'' + u_0 = 1. (1)$$

Equaling the terms of order $n \ (n > 0)$, we get

$$u_n'' + u_n = \sum_{\substack{i, j \in \mathbb{N} \\ i+j+1=n}} u_i u_j$$

or

$$u_n'' + u_n = \sum_{i=0}^{n-1} u_i u_{n-1-i}.$$
 (2)

(b) A general solution of (1) is given by

$$u_0(\theta) = 1 + A\cos\theta + B\sin\theta.$$

The initial conditions u(0) = e + 1 and u'(0) = 0 imply that A = e and B = 0. Hence,

$$u_0(\theta) = 1 + e\cos\theta.$$

From (2), we get the equation satisfied by u_1 :

$$u_1'' + u_1 = u_0^2$$

which gives, after replacing u_0 ,

$$u_1'' + u_1 = (1 + e\cos\theta)^2$$

We expand the right-hand side and, after using the identity $\cos^2 \theta = \frac{1}{2}(\cos 2\theta + 1)$, get

$$u_1'' + u_1 = (1 + \frac{e^2}{2}) + 2e\cos\theta + \frac{e^2}{2}\cos 2\theta.$$
 (3)

The solution of the homogeneous solution corresponding to (3) is $A\cos\theta + B\sin\theta$. We have to find a particular solution. For the term $\frac{e^2}{2}\cos 2\theta$, a solution of the form $\alpha \frac{e^2}{2}\cos 2\theta$ will do and after some calculation, we get $\alpha = -\frac{1}{3}$. The second term is a bit more tricky since $\cos\theta$ is solution of the homogeneous equation. We use the method of variation of the constant. To find a particular solution of

$$v'' + v = \cos\theta \tag{4}$$

we write v as

$$v(\theta) = \alpha(\theta)\cos\theta + \beta(\theta)\sin\theta \tag{5}$$

$$v'(\theta) = \alpha(\theta)(-\sin\theta) + \beta(\theta)\cos\theta \tag{6}$$

where α, β are unknown functions (such functions allways exist because $\cos \theta$ and $\sin \theta$ are two independent solutions of the homogeneous system).

Then, after differentiating (5) and using (6), we get

$$0 = \alpha'(\theta)\cos\theta + \beta'(\theta)\sin\theta.$$
(7)

Since v is solution of (4), we also have

$$\cos\theta = \alpha'(\theta)(-\sin\theta) + \beta'(\theta)\cos\theta.$$
(8)

Equations (7) and (8) form a two by two system which gives us

$$\begin{array}{lll} \alpha'(\theta) & = & -\sin\theta\cos\theta \\ \beta'(\theta) & = & \cos^2\theta \end{array}$$

and, after integration,

$$\alpha = \frac{\cos 2\theta}{4}$$
$$\beta = \frac{\sin 2\theta}{4} + \frac{\theta}{2}$$

Hence, we get

$$v = \alpha(\theta) \cos \theta + \beta(\theta) \sin \theta$$

= $\frac{\cos 2\theta}{4} \cos \theta + (\frac{\sin 2\theta}{4} + \frac{\theta}{2}) \sin \theta$
= $\frac{\theta}{2} \sin \theta + \frac{1}{4} \cos \theta$ (after some computation).

Since we are only interested in finding a particular solution, we can drop the $\cos \theta$ term (it is solution of the homogeneous equation) and take $v = \frac{\theta}{2} \sin \theta$.

Finally, the solution of (3) is

$$u_1(\theta) = \left(1 + \frac{e^2}{2}\right) + e\theta\sin\theta - \frac{e^2}{6}\cos 2\theta + A\cos\theta + B\sin\theta$$

The boundary conditions $u_1(0) = 0$ and $u'_1(0) = 0$ give us $A = -(1 + \frac{e^2}{3}), B = 0$ and

$$u_1(\theta) = (1 + \frac{e^2}{2}) + e\theta \sin \theta - \frac{e^2}{6} \cos 2\theta - (1 + \frac{e^2}{3}) \cos \theta.$$

The term $\theta \sin \theta$ is not physical because it grows to infinity. Our approximation is only valid on a small interval when $\theta \sin \theta$ remains of order 1.

(c) We introduce the function v defined as

$$v(\phi) = u(\theta) \tag{9}$$

where

$$\phi = (1 + \varepsilon h)\theta$$

We differentiate twice (9) and get

$$(1 + \varepsilon h)^2 v''(\phi) = u''(\theta).$$

We plug in this expression in the governing equation:

$$(1 + \varepsilon h)^2 v''(\phi) + v(\phi) = 1 + \varepsilon v^2(\phi).$$
⁽¹⁰⁾

We expand v in a power serie of ε up to the order 1

$$v(\phi) = v_0(\phi) + \varepsilon v_1(\phi) + o(\varepsilon)$$

and from (10) we get

$$(v_0 + \varepsilon v_1)''(1 + \varepsilon h)^2 + v_0 + \varepsilon v_1 = 1 + \varepsilon (v_0 + \varepsilon v_1)^2 + o(\varepsilon)$$

Equaling the terms of same orders we end up with the following equations for v_0 and v_1 :

$$v_0'' + v_0 = 1 \tag{11}$$

$$2hv_0'' + v_1'' + v_1 = v_0^2. (12)$$

We have $v_0 = 1 + e \cos \theta$ (v_0 satisfies the same equation with the same boundary conditions as u_0 in the previous question). After some simplification in (12), we get that v_1 satisfies

$$v_1''(\phi) + v_1(\phi) = \left(1 + \frac{e^2}{2}\right) + \frac{e^2}{2}\cos 2\phi + 2e(1+h)\cos\phi.$$
(13)

The right-hand side is almost the same as in the previous question and we use the result we found there to get the general solution of (13):

$$v_1(\phi) = (1 + \frac{e^2}{2}) + e(1+h)\phi\sin\phi - \frac{e^2}{6}\cos 2\phi + A\cos\phi + B\sin\phi.$$

We set h = -1 so that we get rid of the unphysical term $\phi \sin \phi$. The boundary conditions for v_1 imply that $A = -(1 + \frac{e^2}{3})$ and B = 0. We end up with

$$v_1(\phi) = (1 + \frac{e^2}{2}) - \frac{e^2}{6}\cos 2\phi - (1 + \frac{e^2}{3})\cos \phi$$

which is 2π -periodic with respect to ϕ .

(d) The system has period 2π with respect to ϕ . $\phi = 2\pi$ when

$$\theta = \frac{2\pi}{1+\varepsilon h}$$

= $2\pi(1-\varepsilon h)$ (at first order in ε)
= $2\pi + 2\pi\varepsilon$

since h = -1.

The perihelion (the point where the planet is the closest to the sun) moves forward with an angle $2\pi\varepsilon$ at each rotation.