
Exercise Set 3

Exercise 1

A noticeable proportion of the heat input must penetrate to a depth of L ≈ 1 cm
in t ≈ 30 s for the measurement to satisfy the given requirements. But how to
estimate this depth? Thermal properties for water, fat, and protein have been
given, and we must expect the properties for meat or fish to be some sort of
average of these: Neither larger than the largest of the individual values, nor
smaller than the smallest. The only dimensionless combination of the quantities
L, t, ρ, c, k is kt/(ρcL2) (or powers thereof), leading to the estimate

L ≈

√

kt

ρc

in which we optimistically insert the largest available value for k (that for water)
and the smallest one for c (protein) together with t = 30 s, or

L ≈
√

0.56 · 30

1000 · 1300
m ≈ 3.6 mm

which is quite a bit too small, particularly because the heat must not only
penetrate three times deeper, but the influence of the thermal properties at
that depth must make it back to the surface where it can be measured. Thus
we conclude that this device is likely to only at best yield properties of the upper
millimeter or two of the sample, and so fails the requirements.

We should note that in the above discussion we replaced a constant arising from
dimensional analysis by 1 without further comment. However, in the case of the
heat equation and its fundamental solution (in one space dimension)

∂Φ

∂t
=

∂2Φ

∂x2
, Φ(x, t) =

1√
2πt

exp
(

−
x2

4t

)

this practice can be defended – or maybe we should use twice the value, as the
exponent equals −1 just when x = 2

√
t – but this does not change the conclusion

very much.

One can also arrive more directly at these conclusions by recognizing that the
non-scaled heat equation can be written in the form

∂T

∂t
=

k

ρc
∆T
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where the diffusivity (the fraction on the right hand side) has units m s−1, scaling
the equation correspondingly, and using the above-mentioned properties of the
solutions of the heat equation.

Exercise 2

We are looking for the zeros of

36x3 + (162 + 4ε)x2 − 24εx − 9ε = 0. (1)

We expand x as x = x0 + εx1 + o(ε). After plugging this expression into (1),
we get, at the first order,

36x3
0 + 162x2

0 = 0.

Hence,

x0 = −
9

2
or x0 = 0 (double root).

At the second order, we get:

108x2
0x1 + 4x2

0 + 324x0x1 − 24x0 − 9 = 0.

For x0 = − 9

2
, it reduces to

729x1 + 180 = 0

which gives us

x1 =
20

81
.

For x0 = 0, we get −9 = 0 which is impossible and x cannot be expanded as
x = x0 + εx1 near 0 (in other words, x − x0 is not of order ε). We try an other
power of ε: x = εpx1 + o(εp). We have

36ε3px3
1 + 162ε2px2

1 + 4ε2p+1x2
1 − 24εp+1x1 − 9ε = 0.

p = 1/2 is the smallest strictly positive value which gives rise to more than one
leading order term. Taking p = 1/2 leads us to

162x2
1 = 9

and

x1 = ±
√

9

162
.

Finally, first approximations of the roots are given by

x = −
9

2
+

20

81
ε

and

x = ±
√

9

162

√
ε.
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Exercise 3

We want to solve
εy′′ + (1 + x2)y′ + y = 0 (2)

with the boundary conditions

y(0) = 0, y(1) = 1.

The inner solution ym is given by

(1 + x2)y′

m + ym = 0

which can be integrated explicitly:

ym = Ce− arctan x.

We choose the constant C so that the boundary condition on the right is fulfilled.
We end up with

ym = e
π

4
−arctanx

We want now to determine the scaling xl for the outer solution on the left:

xl =
x

εα
.

We have
yl(xl) = y(x)

and

y′(x) = y′

l(xl)
1

εα

y′′(x) = y′′

l (xl)
1

ε2α
.

Plugging that into equation (2), we get

ε1−2αy′′

l + (1 + ε2αx2
l )ε

−αy′

l + yl = 0. (3)

The smallest α strictly bigger than zero which gives rise to more than one leading
term is α = 1 and then equation (3) yields

y′′

l + y′

l = 0.

The general solution of this equation is

yl = Ae−xl + B.

The boundary condition y(0) = 0 implies that B = −A and

yl = A(1 − e−xl).
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To determine A, we match the outer and the inner expansions:

lim
xl→∞

yl(xl) = lim
x→0

ym(x).

Hence,
A = e

π

4 .

The total expansion is

y = yl(xl) + ym(x) − lim
xl→∞

yl(xl)

= e
π

4 (e− arctanx − e−
x

ε ).
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