
Exercise Set 4

Exercise 1 - (a)

Let’s consider a test volum V in the pellet. The substract enters the pellet by
diffusion and some is created and disappears due to the chemical reaction. The
two contribute to the variation of mass of substract inside V . We have

d

dt∗

∫

V

s∗ dV = −

∫

∂V

D∗
∇s∗ · n dS + +

∫

V

k−1c
∗ dV −

∫

V

k1s
∗e∗ dV.

After using Stokes’ theorem, the surface integral becomes

−D∗

∫

V

∆s∗ dV.

The time derivative can be moved under the integral sign as a partial derivative
because the volume V does not depend on time. The equality is true for any
test volume V . It must then be true pointwise and we have

∂s∗

∂t∗
= −D∗∆s∗ + k−1c

∗
− k1s

∗e∗.

We use the dimensionless variables and rescale the space variable as x
∗ = ax.

∂s

∂t
= −

D∗

a2k1ē
∆s − s + (s + κ − λ)c

Hence,

D =
D∗

a2k1ē
.

The concentration of substract outside the pellet is uniform and we set it to 1.

(b)

When the problem is stationary, the partial derivatives with respect to time
vanish and we have

D∆s − s + (s + κ − λ)c = 0 (1)

s − (s + κ) (2)

We use (2) to simplify equation (1) and get

D∆s − λc = 0

From (2), we also have c = s
s+κ

. Hence,

D∆s − λ
s

s + κ
.

1



The substract’s concentration s depends only on the radius r. The Laplacian is

∆s =
1

r2
(r2s′)′

and we get

D(r2s′)′ − λr2 s

s + κ
= 0. (3)

The boundary conditions are s(1) = 1 and, for symmetry reasons, s′(0) = 0.

We denote by R the reaction rate within a pellet. The amount of substract
transformed into the end product in the pellet is, by definition of the concen-
tration p∗,

M =

∫

B(a)

p∗ dV

where B(a) denotes the pellet or a ball of radius a. Hence,

R =
dM

dt∗

=

∫

B(a)

dp∗

dt∗
dV.

From the chemical reaction, we have

dp∗

dt∗
= k2c

∗

which gives

R = k2

∫

B(a)

c∗ dV

We introduce the dimensionless quantities and get

R = k2ē

∫

B(1)

ca3 dV. (4)

The gouverning equations (1) and (2) give us that c = D
λ

∆s. Plugging that into
(4), we get

R =
k2Da3ē

λ

∫

B(1)

∆s dV

We introduce spherical coordinates:

R =
k2Da3ē

λ

∫ 1

0

1

r2
(r2s′)′4πr2 dr.

Hence,

R =
4πk2Da3ē

λ
s′(1).
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(c)

We assume that ε = λ
D

is a small parameter. We expand s as

s = s0 + εs1 + ε2s2 + o(ε2).

Equation (3) becomes

[

r2(s′0 + εs′1 + εs′2 + o(ε2))
]′
− εr2 s0 + εs1 + o(ε)

s0 + κ + εs1 + o(ε)
= 0

which, after using the identity

1

s0 + κ + εs1 + o(ε)
=

1

s0 + κ
− ε

s1

(s0 + κ)2
+ o(ε),

gives

(r2s′0)
′+ε

[

(r2s′1)
′
−

r2s0

s0 + κ

]

+ε2

[

(r2s′2)
′
−

r2s1

s0 + κ
+

r2s1s0

(s + κ)2

]

+o(ε2) = 0 (5)

At order zero, we have
(r2s′0)

′ = 0.

It follows that r2s′0 is a constant which must be equal to zero since, otherwise,
s′0 would blow up as r tends to zero. Since s′0 = 0, s0 is a constant and, because
of the boundary condition s(1) = 1, we have

s0 = 1

At the first order, we have from (5),

(r2s′1)
′
−

r2

1 + κ
= 0

which, after integration, yields

r2s′1 −
r3

1 + κ
= constant. (6)

The constant above must be zero since s′1 is bounded. We integrate (6) one
more time and get

s1 =
r2

2(1 + κ)
+ constant. (7)

The boundary condition s(1) = 1 implies s1(1) = 0 and we get

s1 =
r2 − 1

2(1 + κ)
.
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At the second order, we have

(r2s′2)
′ = r2

[

s1

1 + κ
−

s1

(1 + κ)2

]

which gives, after replacing s1 by the expression given in (7),

(r2s′2)
′ =

κr2(r2 − 1)

2(1 + κ)3
.

We integrate this expression:

r2s′2 =
κ

10(1 + κ)3
r5

−
κ

6(1 + κ)3
r3.

Again, the integration constant is zero because otherwise s′2 would not be
bounded. Finally, after another integration,

s2 =
κ

(1 + κ)3

(

r4

40
−

r2

12
−

7

120

)

.

The integration constant has been set so that the boundary condition s2(1) = 0
is satisfied. In conclusion, we have

s = 1 + ε
r2 − 1

2(1 + κ)
+ ε2 κ

(1 + κ)3

(

r4

40
−

r2

12
−

7

120

)

+ o(ε2).

(d)

We now assume that η = D
λ

is small. The gouverning equation is

η(r2s′)′
r2s

s + κ
= 0. (8)

We consider only the order 0 in the expansion of s:

s = s0 + o(1).

Taking only the terms of order 0 in (8) leads to

r2s0

s0 + κ
= 0.

Hence,
s0 = 0.

The boundary condition s(1) = 1 cannot be fulfilled. The solution exhibits a
boundary layer at r = 1. We introduce the scaling r = 1 − δρ around r = 1.
The outer solution is expanded as

s(r) = s̃(ρ) = s̃0(ρ) + o(1)
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and equation (8) becomes

η

δ2

(

(1 − δρ)2s̃′
)′

= (1 − δρ)′
s̃

s̃ + κ
.

To balance the two terms on both sides of the equation above, we must take

δ = η
1

2 .

Then, after equaling the zero-order terms, we get

s̃′′0 =
s̃0

s̃0 + κ
(9)

We multiply both sides of (9) by s̃′0

s̃′′0 s̃′0 =
s̃0

s̃0 + κ
s̃′0

and integrate:
1

2
s̃′20 = s̃0 − κ ln(s̃0 + κ) + constant. (10)

The outer solution has to match the inner solution in an intermediate region.
In practice it means that we have

lim
ρ→∞

s̃0 = lim
r→1

s0.

Hence, limρ→ s̃0 = 0 and we can determine the constant in (10) by letting ρ

tends to ∞. We get
1

2
s̃′20 = s̃0 − κ ln

(

s̃0 + κ

κ

)

.

This equation leads to

s̃′0
√

2
(

s̃0 − κ ln
(

s̃0+κ
κ

))

= −1. (11)

The minus sign on the right-hand side comes the fact that the first derivative s′ is
negative. Indeed, the substract is diffusing inside the pellet, the concentration of
substract is therefore decreasing the further we go into the pellet. We integrate
(11) and get

∫ s̃0

0

1
√

2
(

u − κ ln
(

u+κ
κ

))

du = −ρ + constant.

The constant is found by using the boundary condition s̃0(0) = 1. Finally, we
have

ρ =

∫ 1

s̃0

1
√

2
(

u − κ ln
(

u+κ
κ

))

du.
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