Exercise Set 5

Exercise 1 (Logan page 377, problem 2.1d)
Let f denote

$$
f(u)=u^{2}\left(u^{2}-1\right)
$$

The fixed points of the systems are given by the roots of f :

$$
u= \pm 1,0
$$

In general, for a given root u of f,

- if $f^{\prime}(u)<0$ then u is a stable point.
- if $f^{\prime}(u)>0$ then u is an unstable point.
- if $f^{\prime}(u)=0$ then we have to look at the second derivative. If $f^{\prime \prime}(u) \neq 0, u$ is unstable otherwise we have to look at the next derivative and so forth.

These results are easily proved by looking at the taylor expansion of f around u. To illustrate this, let's look at $u=0$ for our given function f. We have

$$
\frac{d u}{d t}=-u^{2}+o\left(u^{2}\right)
$$

and the system is unstable because if u is a little bit smaller than 0 , the expansion above holds and $d u / d t$ is strictly negative, u decreases and therefore u goes further away from 0 . In this case, we have

$$
f^{\prime}(0)=0 \text { and } f^{\prime \prime}(0)=-2 .
$$

At $u=-1$,

$$
f^{\prime}(-1)=-2<0
$$

and the system is stable (locally we have $d(u+1) / d t=-2(u+1)+o(u+1))$.
At $u=1$,

$$
f^{\prime}(1)=2>0
$$

and the system is unstable.
Exercise 2 (Logan page 377, problem2.2b)
We apply directly the theory presented in the book of Logan (page 357-377). The equilibrium points are given by the following curves in the (μ, u) plane (see figure below):

$$
\begin{array}{r}
u=0 \\
9-\mu u=0 \\
\mu+2 u-u^{2}=0
\end{array}
$$

At $(\mu, u)=(-1,1), \frac{d \mu}{d u}$ changes sign. We have

$$
f_{\mu}(\mu, u)=u\left(9-2 u \mu-2 u^{2}+u^{3}\right)
$$

Hence $f_{\mu}(-1,1)=10 \neq 0$ and $(-1,1)$ is a regular turning point where stability is exchanged.

We differentiate f_{μ} once more and get

$$
f_{\mu \mu}=-2 u^{2}-
$$

At $\left(\mu_{1}, u_{1}\right)$, the intersection between the two curves $9-\mu u=0$ and $\mu+2 u-u^{2}=$ $0, f_{u}=0$ but $f_{\mu \mu}$ does not vanish. Thus, we have a double point and stability is exchanged (theorem 2.4, p. 370 in Logan).
$f_{\mu \mu}(0,0)=0$ but $f_{\mu u}(0,0)=9 \neq 0 .(0,0)$ is a double point and stability is also exchanged (theorem 2.5, p. 371 in Logan).

It then suffices to compute the sign of f_{u} at one point of each curve to determine the stability along all the curves. We have

$$
f_{u}=(9-\mu u)\left(\mu+2 u-u^{2}\right)-\mu u\left(\mu+2 u-u^{2}\right)+u(9-\mu u)(-2 u+2)
$$

We choose for example (μ, u) equal to $(0,2),(0,-\infty),\left(\mu, \frac{9}{\mu}\right) \mu \rightarrow \infty$. We get

$$
\begin{aligned}
f_{u}(0,2) & =-180 \\
\lim _{\mu \rightarrow-\infty} f_{u}(0, u) & =-\infty \\
\lim _{u \rightarrow \infty} f_{u}\left(\mu, 9 \frac{9}{\mu}\right) & =-\infty
\end{aligned}
$$

The thick lines indicate stable equilibrium points

