
Exercise Set 6

Problem 1

The infinitesimal change ds∗ due to the chemical reaction is given by

ds∗ = (−k1s
∗e∗ + k−1c

∗)dt∗. (1)

The infinitesimal change due to the reactor is

ds∗ = d(
ms

VR

)

=
1

VR

dms

where ms is the mass of substract in the reactor. Since

dms = V s0dt∗ − V s∗dt ,

we get

ds∗ =
V

VR

(s0 − s∗)dt∗. (2)

We add up the two contributions (1) and (2) and end up with

ds∗

dt∗
= −k1s

∗e∗ + k−1c
∗ +

V

VR

(s0 − s∗).

We proceed in the same way for the remaining variables c∗, e∗, p∗ and get the
following system of o.d.e :

ds∗

dt∗
= −k1s

∗e∗ + k−1c
∗ +

V

VR

(s0 − s∗) (3)

dc∗

dt∗
= k1s

∗e∗ − k−1c
∗ − k2c

∗ −
V

VR

c∗ (4)

de∗

dt∗
= −k1s

∗e∗ + k−1c
∗ + k2c

∗ +
V

VR

(e0 − e∗) (5)

dp∗

dt∗
= k2c

∗ −
V

VR

p∗ (6)

Summing equations (3), (4) and (6), we obtain

d

dt∗
(s∗ + c∗ + p∗) =

V

VR

s0 −
V

VR

(s∗ + c∗ + p∗)

and, similarly with (4) and (5),

d

dt∗
(c∗ + e∗) =

V

VR

e0 −
V

VR

(c∗ + e∗).
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We set
f∗ = c∗ + e∗ and g∗ = s∗ + c∗ + p∗. (7)

The previous system of ode is then equivalent to

ds∗

dt∗
= −k1s

∗(f∗ − c∗) + k−1c
∗ +

V

VR

(s0 − s∗)

dc∗

dt∗
= k1s

∗(f∗ − c∗) − k−1c
∗ − k2c

∗ −
V

VR

c∗

df∗

dt∗
=

V

VR

(e0 − f∗)

dg∗

dt∗
=

V

VR

(s0 − g∗)

We rescale the problem:

s∗ = s0s c∗ = e0c f∗ = e0f

g∗ = s0g t∗ =
t

k1e0

and set

κ =
k−1 + k2

k1s0

λ =
k2

k1s0

ε =
e0

s0

µ =
V

VRk1e0

We end up with the following equivalent but simpler system of ode

ṡ = −fs + (s + κ − λ)c + µ(1 − s)

εċ = fs − (s + κ)c − εµc

ḟ = µ(1 − f)

ġ = µ(1 − g)

The equilibrium points (ṡ = ċ = ḟ = ġ = 0) satisfy

f = 1

g = 1

and

−s + (s + κ − λ)c + µ(1 − s) = 0 (8)

s − (s + κ)c − εµc = 0. (9)

Adding up these two equations, we get

(λ + εµ)c + µs = µ. (10)
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We use equation (10) to express s in function of c and plug the result into
equation (9). We get

F (c) ≡ (µ − (λ + εµ)c)(1 − c) − (κ + εµ)µc = 0.

F (c) is a quadratic polynomial. F (0) = µ > 0 and F (1) = −µ(κ+εµ) < 0 imply
that there exists c∗ ∈ (0, 1) such that F (c∗) = 0. F has an other root in (1,∞)
because limc→∞ F (c) = +∞ but this root cannot give a equilibrium point since
1 = c + e (at equilibrium) implies that c ≤ 1 (e is positive). Therefore, if we
have an equilibrium point, we must have c = c∗.

Once c∗ is known, the value of s at equilibrium (which we denote s∗) is given
by (10) and p∗ and e∗ (the values of p and e at equilibrium) by (7). We have
to check if these values are admissible i.e. if they are positive (concentrations
must be positive). In dimensionless variables, equation (7) yields

f∗ = 1 = c∗ + e∗ and g∗ = 1 = s∗ + εc∗ + p∗.

Since c∗ ∈ (0, 1), e∗ ≥ 0. It remains to check that s∗ ≥ 0 and s∗ + εc∗ ≤ 1 so
that p∗ ≥ 0. (9) implies

s∗ =
(εµ + κ)c∗

1 − c

and since c ∈ (0, 1), s∗ ≥ 0. (10) gives

εc∗ + s∗ = 1 −
λ

µ

and therefore εc∗ + s∗ ≤ 1.

We have then proved that there exists an admissible equilibrium point and that
it is unique. We now investigate the stability of this equilibrium point. We
write down the matrix corresponding to the linearized system at (s∗, c∗, f∗ =
1, g∗ = 1)

M =











−1 + c∗ − µ s∗ + κ − λ −s∗ 0
1 − c∗

ε

−(s∗ + κ∗) − εµ

ε

s∗

ε
0

0 0 −µ 0
0 0 0 −µ











The eigenvalues of M are given by the roots of det[M − λI ]. We have

det[M − λI ] = (−µ − λ)2det[M̃ − λI ]

where

M̃ =

(

−1 + c∗ − µ s∗ + κ − λ
1 − c∗

ε

−(s∗ + κ) − εµ

ε

)

.
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−µ is a double eigenvalue. The two remaining eigenvalues of M are the same
as those of M̃ . The product of the eigenvalues of a 2x2 matrix is equal to the
determinant of the matrix while the sum is equal to the trace. If λ1 and λ2

denotes the two eigenvalues of M̃ , we have

λ1λ2 = detM̃ =
1

ε
[(εµ + λ)(1 − c∗) + µ(s∗ + κ + εµ)] > 0

and

λ1 + λ2 = trM̃ = −(1 − c∗) − 2µ −
s∗ + κ

ε

If λ1 and λ2 are real, λ1λ2 > 0 implies that λ1 and λ2 have the same sign but,
since λ1 + λ2 < 0, they can only be strictly negative.

If λ1 and λ2 are imaginary, they must be conjugate: λ2 = λ1. λ1 + λ2 < 0
implies λ1 + λ1 < 0. Hence,

Re[λ1] = Re[λ2] < 0

In both cases, we have a stable equilibrium point.

Problem 2

(a) The critical point is (0, 0). The linearized system around (0, 0) is given by
the matrix

M =

(

1 1
−2 1

)

.

The eigenvalues λ1 and λ2 of M satisfy

λ1 + λ2 = tr(M) = 2 (11)

λ1λ2 = det(M) = 3. (12)

From (14), we get that λ1 and λ2 have the same sign, which must be positive,
from (13). Therefore λ1 and λ2 are strictly positive and the critical point is not
stable.

(b) The critical point is again (0, 0). The linearized system around (0, 0) is
given by the matrix

M =

(

−1 −1
−2 −4

)

.

The eigenvalues λ1 and λ2 of M satisfy

λ1 + λ2 = tr(M) = −5 (13)

λ1λ2 = det(M) = 2. (14)

From (14), we get that λ1 and λ2 have the same sign, which must be negative,
from (13). Therefore λ1 and λ2 are strictly negative and the critical point is
stable.
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Problem 3

(a)

ẋ = y

ẏ = (x2 + 1)y − x5

We have
Px + Qy = x2 + 1 > 0

and therefore the system does not admit a periodic solution (see theorem 3.4,
Logan p.393).

(b)

ẋ = y

ẏ = y2 + x2 + 1

Since ẏ is strictly positive, y is strictly increasing and we have

y(0) < y(T ) ∀T > 0.

Hence, the system cannot admit a periodic solution.

(c)

ẋ = y

ẏ = 3x2 − y − y5

We have
Px + Qy = −1− y4 < 0

and the system does not admit a periodic solution.
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