
Exercise Set 7

Problem 1

(a) From Newton’s second law of motion, we have that, given a body of mass
M ,

Ma =
∑

F

where a is the acceleration of the body and
∑

F is the sum of all the forces
acting on that body.

In the case of the sprinter, the forces we will consider are:

• Fs: The actual force produced by the sprinter.

• Fi: A single force which accounts for all the friction forces acting within
the body of the sprinter.

• FD: The drag produced by the air (it has to be added with a negative
since the effect of the drag is to slow down the sprinter).

Hence,

M
du∗

dt∗
= Fs + Fi − FD.

As indicated in the text, we write

Fs = Mp∗(t∗) and Fi = −MR(u∗) = −Mu∗

τ
.

It remains to evaluate FD . In this purpose, we proceed to a dimensional anal-
ysis. The drag FD depends on the speed of the sprinter. It depends on his
general shape but we assume that all the sprinters have roughly the same shape
and the only paramater which matters is the surface of their “cross-section”:A.
Concerning the air, ν and ρ have to be considered (the heavier is the air, the
more energy is needed to displace it). We get the following dimension table:

A ρ u∗ ν FD

kg 0 1 0 0 1
m 2 −3 1 2 1
s 0 0 −1 −1 −2

The rank of the system is 3. We get 5-3=2 independant variables:

Π1 =
ν

u∗A1/2
, Π2 =

FD

ρAu∗2
.

Hence, by the Buckingham’s pi theorem,

FD

ρAu∗2
= Φ(

ν

u∗A1/2
).
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After substituting A1/2 by a characteristic length L, we can rewrite this formula
as given in the text:

FD =
1

2
ρCD(Re)Au∗2

where CD(x) = 2Φ(1/x).

(b) We want to determine the scales u, t, p defined as

u∗ = uu, t∗ = tt, p∗ = pp.

After plugging these expressions into the equation of motion, we get

M
u

t

du

dt
+

Mu

τ
u +

1

2
ρCDAu2u2 = Mpp. (1)

To get the desired form, the terms in front of du
dt , u and p have to be equal:

M
u

t
=

Mu

τ
= Mp.

It follows
t = τ and u = τp.

A natural choice for p is P = max(p) and we end up with u = τP . Equation
(1) becomes

u̇(t) + u(t) + εu(t)2 = p(t) (2)

where ε = 1

2
ρCD

A
M τ2P .

If we take M = 80kg, we get ε = 2% and the resistance of the air can be
neglected in a first approximation.

(c) We expand u(t) up to the first order

u = u0 + εu1 + o(ε).

Plugging this expression into equation (2), we get

u̇0 + εu̇1 + u0 + εu1 + ε(u0 + εu1 + o(ε))2 = p(t) + o(ε).

We expand the quadratic term and ignore the terms of order larger than ε.

u̇0 + u0 + ε(u̇1 + u1 + u2

0) = p(t) + o(ε)

The initial condition is

u(0) = u0(0) + εu1(0) + o(ε) = 0.

At the order 0, we get

u̇0 + u0 = p(t), u0(0) = 0. (3)
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At the order 1, we get

u̇1 + u1 + u2

0 = 0, u1(0) = 0. (4)

We set p(t) = 1 in (3) (p∗ = P implies p = 1). We have to solve

u̇0 + u0 = 1. (5)

A particular solution of (5) is u0 = 1 while the solution of the homogeneous
equation is u0 = e−t. Hence, the general solution of (5) is u0(t) = Be−t + 1
(B =constant). u0(0) = 0 implies that B = −1 and we finally have

u0(t) = 1 − e−t.

Equation (4) becomes
u̇1 + u1 + (1 − e−t)2 = 0

or
u̇1 + u1 = −1 + 2e−t − e−2t. (6)

A particular solution of (6) is −1 + 2te−t + e−2t, the general solution is Be−t −
1 + 2te−t + e−2t (B =constant). u1(0) = 0 implies that B = 0 and we have

u1(t) = −1 + 2te−t + e−2t.

Finally we get

u(t) = 1 − e−t + ε(−1 + 2te−t + e−2t) + o(ε)

and
lim

t→∞

u = 1 − ε + o(ε).

(d) If we take into account the effect of the wind, the equation of motion (2)
becomes

u̇ + u + ε(u − δ)2 = p(t).

Then u0 and u1 satisfy

u̇0 + u0 = 1

u̇1 + u1 + (u0 − δ)2 = 0.

A calculation very similar to the case without wind gives us

u1 = −(1 − δ)2 + δ(δ − 2)e−t + 2(1 − δ)te−t + e−2t

and
lim

t→∞

u = 1 − ε(1 − δ)2.

(e) In the case of Florence Griffith-Joyner, we take M = 60kg. We compute δ
and ε:

δ = 0.4 and ε = 0.038.
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The maximal speed with the wind (um
w ) is

um
w = 1 − ε(1 − δ)2 = um + εδ(2 − δ)

where um is the maximal speed without wind. Hence,

uw
m − um

um
=

εδ(2 − δ)

1 − ε
= 2.5%.

The performance of the sprinter is improved by 2.5%. If we apply the same
ratio to the average performance of the sprinter during the same period (10.7s)
we get

t = 10.43s

which gives an approximation of the effect of the wind on the sprinter perfor-
mance. It is fairly close to the actual result of the sprinter.

Problem 2

If y satisfies the differential equation with the given boundary conditions, so
does y(1 − x). The problem is symmetric with respect to x = 1/2 and we will
focus our attention on the boundary layer on the left, around 0.

The inner expansion ym of y satisfies

y′′

m + λym = 0

which gives
ym = A cos

√
λx + B sin

√
λx (7)

where A and B are constant.

Around 0, we rescale the problem with xl = x
εα and yl(xl) = y(x). We get

ε1−4αy′′′′

l − ε−2αy′′

l = λyl.

We take α = 1/2 so that the fourth derivative is taken into account. At the
lowest order, we have

y′′′′

l − y′′

l = 0. (8)

The general solution of this equation is

yl = Axl + B + Cexl + De−xl .

The terms xl = x/
√

ε and exl = e
x
√

ε are not possible, since we (implicitly)
assumed while doing our expansion that yl = O(1). We are left with

yl = B + De−xl .
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Taking into account the boundary conditions yl(0) = y′

l(0) = 0 , we get that
B = D = 0 and

yl = 0. (9)

A similar calculation on the right, around x = 1, would give us

yr = 0.

We can set the constants A and B in (7) by matching ym with yl and yr. We
have

lim
x→0

ym(x) = lim
xl→∞

yl(xl)

which implies, since yl = 0,
A = 0

and
lim
x→1

ym(x) = lim
xr→−∞

yr(xr)

which implies
B sin

√
λ = 0.

We take B 6= 0 (we exclude the zero solution which is not a eigenfunction) and
we arbitrarily set B = 1 since any multiple of a solution remains solution for
the same eigenfrequency. We have:

λ = π2n2, n ∈ N\{0}.

At the left-hand side, yl = 0 does not give us a satisfactory picture of the
solution. yl has to grow at some point in order to match with ym = sin

√
λx.

The fact is that yl is not only O(1) but O(
√

ε) as we will now see. Let’s introduce
yl1 ( yl1 = O(1) ) defined as

yl1 =
√

(ε)yl1 + o(
√

ε). (10)

yl1 satisfies (8) and we have, as earlier,

yl1 = Axl + B + Cexl + De−xl .

When ε tends to infinity, the term xl = x/
√

ε is compensated by the factor
√

ε
in front of yl1 in equation (10). Therefore A does not have to vanish. The term
exl however still goes to infinity and we must impose C = 0. The boundary
conditions yl1(0) = y′

l1(0) = 0 imply that A = −B = D and yl1 takes the form

yl1 = A(xl − 1 + e−xl).

In order to match yl with ym, we introduce the intermediate scaling x̂ = εβxl =
εβ−1/2x where β ∈ (0, 1

2
). We rewrite yl and ym in terms of x̂:

yl = A(ε1/2−β x̂ − ε1/2 + ε1/2e−ε−β x̂)

ym = sin
(√

λε1/2−β x̂
)

=
√

λε1/2−β x̂ + o(ε1/2−β).

5



We equal the lowest order terms and get

A =
√

λ

and the outer expansion on the left looks like

yl =
√

λ(x −
√

ε +
√

εe
−

x
√

ε ).
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