
Exercise Set 9

Exercise 1

(a) We write up the total energy E for the system. It consists of the sum of
the kinetical energy

K =
1

2
mv2

and the potential energy
W = mgy.

Hence,

E = K + W

=
1

2
mv2 + mgy.

Note that we have dropped the asterisks. We will reintroduce them later when
we rescale the equation. The velocity v is given by v = [ẋ(t), ẏ(t)]. Since

y(t) = x(t)2

2b
, we get

v =

[

ẋ(t),
ẋ(t)x(t)

b

]

and

E =
1

2
m

(

ẋ2 +
ẋ2x2

b2

)

+ mg
x2

2b
. (1)

Since there is no friction, the total energy is conserved i.e. dE
dt

= 0. After
differentiating (1) and dividing by mẋ, we get

ẍ

(

x2

b2
+ 1

)

+ ẋ2 x

b2
+

gx

b
= 0 (2)

which is the equation of motion. A natural scaling for x∗ is x∗ = ax. Let
t∗ = T t. we have, from (2) after having reintroduced the asterisks,

a

T 2
ẍ

(

a2

b2
x2 + 1

)

+
a3

T 2b2
x +

a

b
gx = 0

we balance the first term which involves the second derivative of x with the last
one which involves the gravity by setting

a

T 2
=

a

b
g

or

T =

√

b

g
.
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We end up with the following equation:

(

εx2 + 1
)

ẍ + εxẋ2 + x = 0 (3)

and the initial conditions are x(0) = 1, ẋ(0) = 0.

(b) At the zero order, equation (3) gives us

ẋ0 + x0 = 0. (4)

The general solution of (4) is x0 = A cos t +B sin t. The constants A and B are
determined by the initial conditions. We have:

x0(t) = cos t.

At the first order, we have

ẍ1 + x1 = −x0ẋ
2
0 − x2

0ẍ0

or, after replacing x0 by cos t,

ẍ1 + x1 = − cos t (5)

The solution of (5) is given by x1 = − 1
2 t sin t + A cos t + B sin t. The constants

A and B are equal to 0 because of the initial conditions. Hence,

x1 = −
1

2
t sin t.

x1 is unbounded and therefore the assumption x1 = O(1) fails after some time.

As suggested in the text, we introduce the auxiliary time variable

t̃ = (1 + εc)t

We set x̃(t̃) = x(t). It implies that

dx

dt
= (1 + εc)

dx̃

dt̃
and

d2x

dt2
= (1 + εc)2

d2x̃

dt̃
.

Plugging that into (3), we get an equation for the x̃ and t̃. The equation for x̃0

is the same as for x0 and therefore we get

x̃0 = cos t̃.

At the first order, we get

¨̃x1 + x̃1 = −2c ˙̃x0 − x̃2
0
¨̃x0 − x̃0

˙̃x2
0
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which leads to
¨̃x1 + x̃1 = (2c − 1) cos t̃.

If we take c = 1
2 , the secular term disappear and x̃1 = 0. The point particle is

oscillating between x = −1 and x = 1 with a period 1 + εc at the first order in
ε.

Exercise 2

(a) The variation of the population of healthy people which are not immuned
is given by

dx∗

dt∗
= −β1x

∗y∗ + β2y
∗ − β3 (6)

where β1, β2 and β3 are constants. In (6) the first term, −β1x
∗y∗, corresponds

to the people that get sick. Since the disease is an infectious disease, the chance

of getting ill increases with the number of sick people, y, and that’s why we get
this nonlinear term. The second term corresponds to the people that recover
whithout becoming immune while the last term corresponds to people that are
vaccinated and therefore become immuned. The variation of the population of
sick people is given by

dy∗

dt∗
= β1x

∗y∗ − β4y
∗. (7)

The first term in (7) is the counterpart of the first term in (6). The second
term corresponds to people that recover. They can become immune or not and
it implies that β4 ≥ β2. The variation of the population of immuned people is
given by

dz∗

dt∗
= (β4 − β2)y

∗ + β3 (8)

and is obtained from the fact that the total population is constant:

dz∗

dt
= −

dx∗

dt∗
−

dy∗

dt∗
.

A natural scaling for x∗, y∗ and z∗ is the total population P . After rescaling
time as t∗ = 1

β4

t, we get

ẋ = −αxy + εy − κ (9)

ẏ = αxy − y. (10)

for some dimensionless constants α, ε and κ.

(b) The constraints are that x, y and z are positive and their sum is constant:
x∗ + y∗ + z∗ = P which implies that x+ y + z = 3. It follows that we must have











x ≥ 0

y ≥ 0

x + y ≤ 3
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If there is no vaccination, κ = 0 and we get:

ẏ = y(αx − 1) (11)

ẋ = (ε − αx)y. (12)

Dividing (11) by (12), we get

ẏ

ẋ
=

dy

dx
=

αx − 1

ε − αx
.

We can integrate this expression:

dy

dx
= −1 +

ε − 1

ε − αx

implies

y = −x +
1 − ε

α
ln(|αx − ε|) + C. (13)

Equation (13) is an expression for the orbit when nobody is vaccinated.

(c) From (10), we get that ẋ vanishes on the curve

y =
κ

α
(

ε
α
− x

)

while ẏ vanishes when

y = 0 and x =
1

α
.

In figure 1, some orbits are plotted for κ = 0.1, ε = 0.5 and κ = 1.5.

(d) The critical point (xc, yc) satisfies

0 = −αxcyc + εyc − κ,

0 = αxcyc − yc.

Hence,

xc =
1

α
and yc =

κ

ε − 1
.

At the critical point the linear approximation of (9) and (10) is given by the
matrix A:

A =

(

− ακ
ε−1 ε − 1,
ακ
ε−1 0.

)

Let λ1 and λ2 be the two eigenvalues of A. We have

λ1 + λ2 = trA = −
ακ

ε − 1
> 0

and
λ1λ2 = detA = −ακ < 0.

Hence, λ1 and λ2 have opposite sign and the system is unstable.
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Figure 1: phase plane

5


