Suggested solution for exercise Set A

a In component form the two given equations (1) and (2) become ${ }^{1}$

$$
\begin{gather*}
\frac{\partial u^{*}}{\partial x^{*}}+\frac{\partial v^{*}}{\partial y^{*}}=0 \tag{6}\\
\frac{\partial u^{*}}{\partial t^{*}}+u^{*} \frac{\partial u^{*}}{\partial x^{*}}+v^{*} \frac{\partial u^{*}}{\partial y^{*}}=-\frac{1}{\rho} \frac{\partial p^{*}}{\partial x^{*}}+v \nabla^{* 2} u^{*} \tag{7}\\
\frac{\partial v^{*}}{\partial t^{*}}+u^{*} \frac{\partial v^{*}}{\partial x^{*}}+v^{*} \frac{\partial v^{*}}{\partial y^{*}}=-g-\frac{1}{\rho} \frac{\partial p^{*}}{\partial y^{*}}+v \nabla^{* 2} v^{*} \tag{8}
\end{gather*}
$$

With a scaling as indicated in the problem text we must have

$$
\begin{equation*}
\frac{U}{L}=\frac{V}{H} \tag{9}
\end{equation*}
$$

for (6) to be correctly scaled, and (6) will then have the form

$$
\begin{equation*}
u_{x}+v_{y}=0 . \tag{10}
\end{equation*}
$$

Moreover, turning (9) upside down we get two equal time scales, one "vertical" and one "horizontal" - so this will be a prime candidate for our time scale:

$$
T=\frac{L}{U}=\frac{H}{V}
$$

The pressure varies from 0 at the surface to $\approx \rho g H$ at the bottom, so

$$
p^{*}=\rho g H p
$$

(as in the problem text) seems reasonable. If we introduce this into (7) we get

$$
\frac{U}{T} u_{t}+\frac{U^{2}}{L} u u_{x}+\frac{U V}{H} v u_{y}=-\frac{g H}{L} p_{x}+v U\left(L^{-2} u_{x x}+H^{-2} u_{y y}\right)
$$

where the three fractions on the left hand side are all equal, so a good scaling would make $g H / L$ equal to these (we expect viscous forces to play a minor role, so the final part of the righthand side will be small). Thus we should have

$$
U^{2}=g H,
$$

and a bit of computing yields

$$
\begin{equation*}
u_{t}+u u_{x}+v u_{y}=-p_{x}+\frac{1}{\varepsilon \operatorname{Re}}\left(\varepsilon^{2} u_{x x}+u_{y y}\right), \tag{11}
\end{equation*}
$$

while (8) becomes

$$
\begin{equation*}
\varepsilon^{2}\left(v_{t}+u v_{x}+v v_{y}\right)=-1-p_{y}+\frac{\varepsilon}{\operatorname{Re}}\left(\varepsilon^{2} v_{x x}+v_{y y}\right) . \tag{12}
\end{equation*}
$$

[^0]For tidal waves in the North Sea we find

$$
\begin{aligned}
U & =\sqrt{g H} \approx 30 \mathrm{~m} / \mathrm{s}, \\
L & =U T \approx 30 \mathrm{~m} / \mathrm{s} \cdot 6 \cdot 3600 \mathrm{~s} \approx 600 \mathrm{~km}, \\
\varepsilon & =H / L \approx 100 \mathrm{~m} / 600 \mathrm{~km} \approx 2 \cdot 10^{-4}, \\
\operatorname{Re} & =U H / v \approx 30 \mathrm{~m} / \mathrm{s} \cdot 100 \mathrm{~m} /\left(10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)=3 \cdot 10^{9}
\end{aligned}
$$

so that $1 / \varepsilon \mathrm{Re} \approx 10^{-5}$ and it seems reasonable to expect that (10), (11) (12) can be simplified to the system (3).
b For a given fluid particle we find

$$
\frac{d^{2} x}{d t^{2}}=\frac{d u}{d t}=u_{t}+\frac{d x}{d t} u_{x}+\frac{d y}{d t} u_{y}=u_{t}+u u_{x}+v u_{y}=-p_{x}=-h_{x}
$$

by using the middle equation in (3), and finally the relation $p=h(x, t)-y$ noted in the problem text. In particular, since h_{x} is independent of y, the uniqueness theory for second order differential equations shows that all fluid particle starting with the same x value (but different y) will continue to have the same x value for every future time, provided only that they all had the same value for $\dot{x}=u$ initially. This is precisely so when u is independent of y initially. So all the particles that shared the same x value initially will share the same x value in the future, and hence the same u value. So u is independent of y, as claimed.

This implies $u_{y}=0$. So the leftmost part of equation (3) simplifies to the (4) as claimed (once again, we use $p_{x}=h_{x}$).
c A fluid particle on the surface satisfies $y=h(x, t)$. Differentiation of this relationship with respect to t yields

$$
v=h_{x} u+h_{t} \text { for } y=h(x, t)
$$

Since $v=0$ whenever $y=0$ we find, using Green's formula:

$$
\begin{aligned}
0 & =\iint_{R}\left(u_{x}+v_{y}\right) d x d y=\int_{\partial R}(-v d x+u d y) \\
& =\int_{x_{1}}^{x_{2}}\left(\left(h_{x} u+h_{t}\right) d x-u h_{x} d x\right)+u\left(x_{2}, t\right) h\left(x_{2}, t\right)-u\left(x_{1}, t\right) h\left(x_{1}, t\right) \\
& =\int_{x_{1}}^{x_{2}}\left(h_{t}+(u h)_{x}\right) d x
\end{aligned}
$$

where we have used that $u d y=u h_{x} d x$ along the curve $y=h(x, t)$. from this $h_{t}+$ $(u h)_{x}=0$ by the usual argument (i.e., using the Reymond-duBois lemma).

This is a standard conservation law in differential form, with conserved quantity h and flux $u h$. This makes sense, as the integral of h becomes an area (which becomes volume if we multiply by some arbitrary length along the suppressed space direction) and $u h$ is the total transport of water past a given point (in $\mathrm{m}^{2} / \mathrm{s}$, which becomes m^{3} /s if we multiply by the same arbitrary length). So this equation expresses the conservation of volume, which is equivalent with conservation of mass so long as the density is considered constant.

[^0]: ${ }^{1}$ Equation numbers (1)-(5) in what follows refer to the equations of the problem text.

