TMA4195 Mathematical modelling 2004

Exercise set 7
For the special activity week (week 41)

Exercise 1: (Exam, August 1996 - somewhat modified.) The capacity of a sprinter is, among other things, determined by the maximal force she is able to produce (in the horizontal direction). Write this force as $M P$, where M is the mass of the runner - so that P is the maximal acceleration, in some sense. In addition, "inner resistance" - friction in arms and legs, as well as the work involved in accelerating them back and forth - can be modelled as a counter force $M R\left(u^{*}\right)$, where the function $R\left(u^{*}\right)$ of the sprinter's speed u^{*} satisfies $R(0)=0$. We assume furthermore that R is approximately linear. Dimensional reasoning leads to $R\left(u^{*}\right)=u^{*} / \tau$ where τ is a time constant. Measurements on different sprinters yield $P \approx 10 \mathrm{~m} / \mathrm{s}^{2}$ and $\tau \approx 1 \mathrm{~s}$, and we will use these values below.
(a) Explain why a reasonable equation of motion for the runner in still air may be

$$
M \frac{d u^{*}}{d t^{*}}+M \frac{u^{*}}{\tau}+\frac{1}{2} \rho_{\mathrm{air}} C_{D} A u^{* 2}=M p^{*}\left(t^{*}\right)
$$

and explain in particular the origin of the expression for the air resistance. Use dimensional analysis where A is the cross section area of the runner (as seen from the front) and $C_{D}=C_{D}(\operatorname{Re})$. Here $\operatorname{Re}=L u^{*} / v$, where L is a typical length and v is the (kinematic) viscosity of air.
(b) Find and defend a suitable choice of scales for u^{*}, t^{*} and p^{*}. (Hint: What is the greatest acceleration? What is the greatest steady speed, assuming no air resistance?) With one reasonable choice of scales, the dimensionless form becomes

$$
\dot{u}(t)+u(t)+\varepsilon u(t)^{2}=p(t), \quad \varepsilon=\frac{1}{2} \rho_{\mathrm{air}} C_{D} \frac{A}{M} \tau^{2} P .
$$

Is the air resistance very important? (Assume $C_{d} \approx 1, A \approx 0.45 \mathrm{~m}^{2}, \rho_{\mathrm{air}} \approx 1 \mathrm{~kg} / \mathrm{m}^{3}$.)
(c) In a hundred meter dash we may assume that the runner uses maximal power all the way, i.e., $p^{*}\left(t^{*}\right)=P$. Determine the first two terms in a perturbation expansion for u in this case. How quickly after the start does a sprinter achieve a roughly constant speed?

It is well known that the wind will influence the times of a hundred meter dash. How is the friction term changed by a tail wind of speed W ? Use $\delta=W /(\tau P)$ as a non-dimensional measure of the tail wind.
(d) Determine, up to order ε, the maximal speed a sprinter can maintain as a function of δ.

In one of the qualification heats during the Olympic games in 1988, Florence Griffith-Joyner beat the world record on the hundred meter dash (10.49 s). In the other runs and in the games themselves her times were around 10.7 s . The wind gauge registered no wind during the record run, but many people thought there was a considerable tail wind (estimated at $4 \mathrm{~m} / \mathrm{s}$) and that the gauge was out of order.
(e) Discuss this claim.

Exercise 2: (Lin \& Segel page 300, problem 7.) For a slightly stiff string with fixed ends, the modes of vibration have a shape $y(x)$ given by the eigenvalue problem

$$
\varepsilon y^{\prime \prime \prime \prime}-y^{\prime \prime}=\lambda y, \quad y(0)=y^{\prime}(0)=y(1)=y^{\prime}(1)=0 .
$$

Here ε is a measure of the stiffness; $0<\varepsilon \ll 1$. The eigenvalue λ is a dimensionless frequency of vibration. Find outer and inner approximations, assuming that λ is $O(1)$, and conclude that the stiffness has no effects on the eigenvalues to lowest order.

