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Reaction and basic model

We consider a reaction where an enzyme acts on a substrate to form a product.
The reaction goes via a complex, which may either revert to substrate plus
enzyme, or to product plus enzyme. In particular, the enzyme is not used up
in the process, though some of it will at any time be bound up in the complex.
The reaction looks like this:

s +e
k1
�
k−1

c
k2→ p +e.

This leads to the model

ds

dt
=−k1se +k−1c,

dc

dt
= k1se −k−1c −k2c,

de

dt
=−k1se +k−1c +k2c,

dp

dt
= k2c,

where s, c, e, and p are the concentrations of the various substances. We shall
use the initial conditions

s(0) = s̄, c(0) = 0, e(0) = ē, p(0) = 0.

Immediate consequences. We get c + e = ē and s + c +p = s̄. Hence we need
only solve for s and c. Substitute e = ē − c into the first two equations and get
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our final, non-scaled model:

ds

dt
=−k1ē s + (k1s +k−1)c,(1)

dc

dt
= k1ē s − (k1s +k−1 +k2)c,(2)

s(0) = s̄, c(0) = 0.(3)

Scaling

In their treatment of this problem, Lin & Segel were led to a scaling which
works in many cases. However, an improved scaling was introduced by Segel
& Slemrod (see the References, below). We shall ignore the original Lin & Segel
scaling, and move directly to the better scaling.

It is frequently noted that the reactions s + e � c tend to be much faster
than the reaction c → p+e. Thus there is an initial, fast transient during which
c rapidly increases from 0 to some value at which the first reaction pair are
nearly at equilibrium. This is then called a quasi-steady state (QSS), and is
characterized by dc/dt being very small. To a lowest order approximation,
then, we put the righthand side of (2) equal to zero (an algebraic equation),
solve for c, and replace c by the solution in (1). The resulting single first order
equation is known as the Michaelis–Menten kinetics for the system.

More precisely, in the quasi-steady state dc/dt ≈ 0. Assuming this is exact,
we solve (2) for c to get

c = s

s +K
ē, where K = k−1 +k2

k1
.

Substitute into (1) and simplify, to get the Michaelis–Menten equation

ds

dt
=− k2ē s

s +K

(which is easily solved, but never mind that for now).
Segel & Slemrod use this to find the proper time scale for the quasi-steady

state.
Clearly the maximal value of s is s̄, so we will use this to scale s. One good

way to get a time scale is

(4) tslow = max |s|
max

∣∣∣ds

dt

∣∣∣ =
s̄

k2ē s̄

s̄ +K

= s̄ +K

k2ē
.
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This is the long time scale of the problem.
On the other hand, during the initial transient s ≈ s̄ and so (2) becomes

dc

dt
≈ k1ē s̄ −k1(s̄ +K )c.

The equilibrium of this equation is at

c = ē s̄

s̄ +K
,

so this value is actually a good scale for c. Moreover, the approach to this equi-
librium is exponential with a time constant

(5) tfast =
1

k1(s̄ +K )
.

This is the appropriate choice of the short time scale. The ratio between the
two time scales is

tfast
tslow

= k2ē

k1(s̄ +K )2 .

We must have tfast ¿ tslow, or else our assumptions of very different time
scales is wrong, and our analysis becomes suspect.

We thus end up with the following scalings, for the outer solution:

(6) s′ = s̄s, c ′ = ē s̄

s̄ +K
c, t ′ = tslowt = s̄ +K

k2ē
t .

For the inner solution the rescaled dimensionless time τ is given by

t = tfastτ=
τ

k1(s̄ +K )
.

We now need to investigate whether and under what circumstances the inner
solution will be valid. We assumed that s did not decrease much during the
initial time tfast. So now we estimate the decrease in s: Note that we cannot
use the QSS assumption here, but insert c ≈ 0 and s ≈ s̄ in (1) to get ds/dt ≈
−k1ē s̄, from which we get the change

∆s ≈−k1ē s̄ tfast =− ē s̄

s̄ +K
.

We need |∆s/s̄|¿ 1, or

ε
def= ē

s̄ +K
¿ 1.
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There are enough parameters in this problem that the most convenient choice
of non-dimensional parameters is far from obvious. Following Segel & Slem-
rod, we choose

(7) σ= s̄

K
, η= ē

K
, κ= k−1

k2

where K is defined above. Note that

ε= η

σ+1
.

It also turns out useful to insert k−1 = κk2 into the definition of K to obtain

k2 = K k1

κ+1
.

For example, this leads to a different expression for the ratio of the two time
scales in terms of the other dimensionless quantitites:

tfast
tslow

= ε

(κ+1)(σ+1)
.

Thus, if ε¿ 1 then clearly tfast ¿ tslow, since (κ+1)(σ+1) > 1.
Now, applying the scalings (6) to (1)–(3), substituting the above value for k2

wherever it appears, and simplifying, we finally get the scaled equations (after
dropping the primes) on the form

1

(κ+1)(σ+1)

ds

dt
=−s +

( σ

σ+1
s + κ

(κ+1)(σ+1)

)
c,(8)

ε

(κ+1)(σ+1)

dc

dt
= s − σs +1

σ+1
c,(9)

s(0) = 1, c(0) = 0.(10)

Some principles

Segel & Slemrod used these general principles to derive their scaling:

1. Dependent variables (s and c in our example) should be scaled accord-
ing to their maximal value, so that their dimensionless versions vary
between 0 and 1.
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2. Independent variables (t in our example) should be scaled so that the
dependent variables vary considerably over the chosen scale. In other
words, the derivatives of the dependent variables ought to have a max-
imum value of 1 in the scaled model.

Solution by perturbation

Outer solution. First, put ε = 0 in the differential equations (and add a sub-
script zero to s and c). Then (9) becomes the algebraic equation

c0 = (σ+1)s0

σs0 +1
.

We substitute this into (8), which simplifies into

1

σ+1

ds0

dt
=− s0

σs0 +1
.

This separable equation has the general solution

(11) σs0 + ln s0 =Q − (σ+1)t .

The integration constant Q can be determined by using s0(0) = 1, so Q = σ.
(This is consistent with our assumptions, but should really have been ob-
tained by matching.) The other initial condition (c0(0) = 0) is not satisified,
but this was not to be expected in the outer solution.

Inner solution. In the inner solution, we use tfast as a time scale. Thus the
inner dimensionless time τ is written in terms of (outer) dimensionless time t
(should be t ′, but we have dropped the primes) by

t = tfast
tslow

τ= ε

(κ+1)(σ+1)
τ.

Plugging this into (8), (9), (10) (and using S, C for the inner solution) we get

1

ε

dS

dτ
=−S +

( σ

σ+1
S + κ

(κ+1)(σ+1)

)
C(12)

dC

dτ
= S − σS +1

σ+1
C(13)

S(0) = 1, C (0) = 0.(14)
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We set ε = 0 and add subscripts zero to the functions. Then (12) becomes
S0 = constant, which together with the first initial condition in (14) implies
S0 = 1. We plug this into the second equation and get

dC0

dτ
= 1−C0

which together with the second initial condition in (14) has the solution

C0 = 1−e−τ.

Matching and uniform approximation. To this order, we can match inner
and outer solutions by simply requiring that limτ→∞ S0(τ) = limt→0 s0(t ). This
yields Q =σ, as we guessed before.

The similar equation limτ→∞C0(τ) = limt→0 c0(t ) turns out to be automat-
ically satisfied.

To get a uniformly valid approximation (we hope), we join together inner
and outer solutions by simply adding them together and subtracting the com-
mon part (which is the constant 1 both in case of (s0, S0) and (c0,C0)). Thus
the lowest order approximation to s is quite simply

s(t ) ≈ s0(t )+S0(τ)−1 = s0(t ),

while that for c is

c(t ) ≈ c0(t )+C0(τ)−1 = (σ+1)s0(t )

σs0(t )+1
−exp

(
− (κ+1)(σ+1)

ε
t
)
.

Unfortunately, we can give no simple formula for s0(t ). It has to be found by
solving the trancendental equation (11).1
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1It can be exressed in terms of Lambert’s W function: W (z) is defined as a solution w of wew =
z. Maple knows about this function, under the name W .
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