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The steady state equations for the one-dimensional thermistor can be writ-
ten, on dimensionless form,
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where the conductivityσ is a function of the temperature u, while β and γ are
constants. The equations forφ can immediately be integrated and the bound-
ary conditions applied to yield
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which we can then substitute in the equations for u.
Now we add the new assumption σ(u) = e− f (u)/ε, where f is a “well be-

haved” and increasing function, in the sense that 0 < f ′(z) =O(1).1

Thus we are left with having to solve this system:
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d2u

dz2 + γe f (u)/ε(∫ 1

0
e f (u)/εdz
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−du

dz
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Before we do anything, note that (1) is unchanged by the substitution z æ
1− z, so that the solution u will be symmetric about the 1

2 : u(1− z) = u(z).
Also, u is concave, and so it must have a maximum at the center: u∗ = u( 1

2 ).

1We should also have f (0) = 0, since σ(0) = 1 in our scaling.
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Some notes on the thermistor 2

To proceed further, note that when u changes by ε, then so should f (u),
very roughly, in the interesting parts of the temperature range. And so e f (u)/ε

can be expected to change by a factor e. This leads to the suspicion that the
maximum of e f (u)/ε at z = 1

2 is very narrow; in fact, ε itself seems like a good
candidate for the width of the peak. Thus we are led to consider an outer re-
gion, where |z − 1

2 |À ε, and an inner region, where z − 1
2 =O(ε).

In the outer region, we should have u′′ ∼ 0, so u is approximately linear –
but a different linear function for the two halves of the thermistor. Consider-
ing the boundary condtions, we are led to

u(z) ∼
{

(1+βz)u0, 0 ≤ z < 1
2 ,

(1+β−βz)u0, 1
2 < z ≤ 1

In the inner region, we might wish to use the scaling u(z) = u∗ − εw(ζ)
where z = 1

2 +εζ. (I chose the minus sign to make w positive.) But the calcu-
lations become a bit easier if we use

u(z) = u∗− ε

f ′(u∗)
w(ζ), z = 1

2
+εζ

instead, since then we get the simpler formulas2

f (u) ∼ f (u∗)−εw, e f (u)/ε ∼λ∗e−w (λ∗ = e f (u∗)/ε).

We plug all this into (1) and get

(2) −d2w

dζ2 + γ f ′(u∗)

ελ∗
e−w(∫ ∞

−∞
e−w dζ

)2
= 0

At this point, the books says we should choose u∗ so that γ f ′(u∗)/(ελ∗) be-
comes 1. But why does it say that, and why the cryptic comment in the mar-
gin, that we could use another O(1) constant?

One way to understand this would be to integrate (2) from −∞ to ∞. If we
assume that w ′(ζ) has a limit as ζ→±∞, then this yields the equation

(3)
γ f ′(u∗)

ελ∗ =
[dw

dζ

]∞
ζ=−∞

∫ ∞

−∞
e−w dζ.

2λ∗ is the inverse of the smallest conductivity, which is not quite the same thing as the book
says on p. 237.
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3 Some notes on the thermistor

And so, if our scaling is such that the factors in the righthand side of this equa-
tion are O(1), then so is the lefthand side as well.

For more detailed knowledge, however, we should try to solve (2). It is after
all an equation of the form

−w ′′+2c2e−w = 0,

where the constant c happens to depend globally on w via the integral in (2).
So after solving the differential equation, we need to go back and evaluate the
integral and fit the result with the original equation.

First we multiply by −2w ′ and integrate, to get (w ′)2 +4c2e−w = constant.
Then we use the known data w(0) = 0 and w ′(0) = 0 (because of the symme-
try) to evaluate the constant, so we end up with

(w ′)2 = 4c2(1−e−w ).

Multiply this by 1
4 ew to get ( 1

2 ew/2w ′)2 = c2(ew −1). With ψ= ew/2, this is

(ψ′)2 = c2(ψ2 −1).

The known data from above yields ψ(0) = 1, ψ′(0) = 0. The solution then is
ψ(ζ) = coshcζ, so that

w = 2lncoshcζ.

We can now go back and evaluate the problematic integral in (2). Fortunately,
this is easier than one might expect, since we know the differential equation
satisfied by w , so∫ ∞

−∞
e−w dζ= 1

2c2

∫ ∞

−∞
w ′′ dζ= 1

2c2

[
w ′

]∞
ζ=−∞ = 2

c
since[

w ′
]∞
ζ=−∞ = 2c

[
tanhcζ

]∞
ζ=−∞ = 4c.

Substitute these into (3) to conclude that

γ f ′(u∗)

ελ∗ = 8,

and not 1 at all. But 8 =O(1), so the author is still right; but now we know why.
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Notice that we still do not know the value of c, nor do we know the integration
constant u0 of the outer solution. We should be able to find these by match-
ing.

We write up our two term inner solution, and then change to outer vari-
ables:

(4) U = u∗− 2ε

f ′(u∗)
lncoshcζ= u∗− 2ε

f ′(u∗)
lncosh

c(z − 1
2 )

ε

But cosh Z ∼ 1
2 e |Z | with a trancendentally small error when |Z |→∞; therefore

lncosh Z ∼− ln2+|Z |, and

U ∼ u∗− 2c

f ′(u∗)
|z − 1

2 |

to lowest order. Matching this for 0 ≤ z < 1
2 with the outer solution (1+βz)u0,

we get

u∗− c

f ′(u∗)
= u0,

2c

f ′(u∗)
=βu0,

with the solutions

u0 = 2u∗

2+β , c = βu∗ f ′(u∗)

2+β .

It is worth noting that we found the width of the center region, where conduc-
tivity is low, to be not quite ε, but rather ε/c, as is clear from (4). Therefore, our
analysis is not quite right if β is small. This makes sense: If the thermistor is
well insulated, it will have a more uniform temperature.
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