
TMA4155 Cryptography, intro 2010

Number theory
Harald Hanche-Olsen

http://www.math.ntnu.no/~hanche/

Congruences, or modular arithmetic

Arithmetic modulo 12 or 24 is familiar to anyone using a clock, though not usually
under that name. The general notion of congruence replaces 12 or 24 by a positive
integer n:

Two integers a and b are called congruent modulo n if their difference is a mul-
tiple (by which we mean an integer multiple) of n – that is, b − a = kn for some
integer k. When this is the case, we write

a ≡ b (mod n),

though we commonly drop the part (mod n) when the modulus n is clear from
context.

Congruence modulo n “behaves like equality” in the sense that

1. a ≡ a for all a,
2. if a ≡ b then b ≡ a,
3. if a ≡ b and b ≡ c then a ≡ c.

Any binary relation satisfying the above requirements is called an equivalence re-
lation.

Of fundamental importance is the fact that addition and multiplication “re-
spect” congruence modulo n, in the sense that if a ≡ b and c ≡ d then a+c ≡ b+d
and ac ≡ bd . Thus, in any arithmetic expression involving integers, if any part is
replaced by a different number that is congruent to the original modulo n, then
the result is still congruent modulo n.

This lies behind a classic trick for checking the accuracy of multiplication: Calculations
modulo 9. Every positive integer is congruent modulo 9 to the sum of its decimal digits,
because 10 ≡ 1 (mod 9), from which we get 10k ≡ 1 for every positive integer k, and so, for
example, 831 = 8 · 102 + 3 · 10+ 1 ≡ 8+ 3+ 1 = 12. Repeating the trick until we’re left with
just one digit, we conclude 831 ≡ 3 (mod 9). Thus you can quickly check for errors in the
calculation 831 ·42 = 34902 by repeating it modulo 9: If the result is correct you should also
have 3 ·6 ≡ 3+4+9+0+2 ≡ 0, which is indeed the case. (This does not, of course, prove that
there is no mistake. On average, this procedure ought to catch eight out of nine mistakes.)

Version 2011-10-04

Number theory 2

Remainders and canonical representatives. The integer division algorithm for
computing a/n as we learned it in school results in a quotient q and a remain-
der r , so that

a = qn + r, 0 ≤ r < n.

You may be used to writing the answer as a/n = q + r /n, but for our purposes, it
is better left in the above form. We call q the quotient and r the remainder of the
division. More precisely, we say r is the remainder of a modulo n, and write this in
the form

r = a mod n.

We have introduced similar notations which should not be confused: a mod n is a num-
ber, and the above equation says r equals this number. On the other hand, r ≡ a (mod n) is
a relation between numbers r and a. (Some texts write that relation without the parenthe-
ses, as r ≡ a mod n. Note the subtle difference in spacing, though.) It is certainly true that
if r = a mod n then r ≡ a (mod n), but the converse is not true: Certainly 17 ≡ 22 (mod 5),
but 22 mod 5 = 2 6= 17.

Despite the above warning, what is true is that for every integer a (and every
integer n > 0) there is a unique integer r with 0 ≤ r < n and r ≡ a (mod n). We
have already seen that r = a mod n is one such. Assuming that r ′ is another, we
must have r ≡ r ′ (mod n). Thus r −r ′ is a multiple of n. But the only multiple of n
in

{
0,1, . . . ,n −1

}
is 0, so r = r ′.

Thus, among all integers congruent to a modulo n there is one that stands out
from the crowd, namely a mod n. In a sense this represents the set of integers con-
gruent to a.

We introduce the notation

Zn = {
0,1,2, . . . ,n −1

}
for all the “canonical” representatives of integers modulo n. Also, we write Z for
the set of all integers (positive, zero, and negative).

A more abstract approach is to introduce equivalence classes: The equivalence class
(modulo n) of an integer a is the set of all integers congruent with a modulo n. We could
write it

[a] = {
m ∈Z : m ≡ a (mod n)

}= {
a +kn : k ∈Z}= {

. . . , a −2n, a −n, a, a +n, a +2n, . . .
}

and then define addition and multiplication on equivalence classes by [a]+ [b] = [a + b]
and [a][b] = [ab]. The resulting algebraic structure (set of equivalence classes with addi-
tion and multiplication) is commonly written Zn . This conflict of notations should be only
mildly confusing, since as we have seen, each equivalence class has exactly one member in{
0,1, . . . ,n −1

}
.

Version 2011-10-04

http://www.math.ntnu.no/~hanche/

3 Number theory

Divisibility, divisors, factors

If a and b are integers, we say that a divides b and write a | b if there is an integer
q so that b = aq . We also say that a is a divisor of b, or that it is a factor of b. (Such
an important and classical concept, there are lots of names for it.)

The following elementary properties of this relation almost characterize it as a
partial order:

1. a | a for all a,
2. if a | b and b | a then a =±b,
3. if a | b and b | c then a | c.

If we restrict our attention to positive numbers, the second property will conclude a = b,
and we really do have a partial order. But the “divides” relation does not distinguish between
a number and its negative, so this fails in general.

The number zero behaves a bit oddly under this relation: a | 0 for all a, but 0 - b
for all b 6= 0 (the symbol - is used for “does not divide”).

On the other hand, the number one is a universal divisor: 1 | b for all b.
A common divisor for two nonzero integers a and b is a number c which divides

both: c | a and c | b. A greatest common divisor is a common divisor d > 0 so that
every common divisor divides d . The greatest common divisor is clearly unique, if
it exists (and we shall see that it does), and we write it gcd(a,b).

The following simple fact is frequently useful: If c is a common divisor of a and
b then c | (ax +by) for any integers x and y . Clearly, this fact is just as true with
more summands, or if each summand has more factors.

Lemma 1 (Bézout). Any two nonzero integers a and b have a greatest common
divisor, and there exist integers x and y so that

ax +by = gcd(a,b).

Proof. I give here an abstract proof, in the sense that it does not provide a practical
way to compute the greatest common divisor or to find x and y . We will return to
that.

Define the set of integers

I = {
ax +by : x, y ∈Z}

(Z is the set of all integers). It has these simple properties:

1. If u, v ∈ I then u + v ∈ I ,
2. if u ∈ I and v ∈Z then uv ∈ I .

Such a set is called an ideal, but we are not going into the theory of ideals.

Obviously (select (x, y) = (1,0) or (x, y) = (0,1)) a ∈ I and b ∈ I , and every common
divisor of a and b is also a divisor of every member of I .

Version 2011-10-04

Number theory 4

Let d be the smallest positive member of I . I claim that

I = {
qd : q ∈Z}

. (1)

That qd ∈ I whenever q ∈Z follows from the second of the above properties. Con-
versely, if u ∈ I , divide u by d , getting the quotient q and the remainder r :

u = qd + r, 0 ≤ r < d .

Then the properties of I show that r = u −qd ∈ I , but since d is the smallest posi-
tive member of I , r cannot then be positive, so we must have r = 0. Thus u = qd ,
and (1) is proved.

Equation (1) states that d divides every member of I . Since a,b ∈ I , it follows
that d is a common divisor of a and b. Also, since d ∈ I , every common divisor of
a and b divides d . Thus d is the greatest common divisor of a and b, and being a
member of I , it does have the form d = ax +by for suitable integers x and y .

Bézout’s lemma has two useful corollaries. (A corollary is an immediate conse-
quence of a previous result.)

Corollary 2. Let a and n > 0 be integers. Then a has an inverse modulo n if and
only if gcd(a,n) = 1.

Proof. First, assume that a has an inverse b modulo n. By definition, this means
that ab ≡ 1 (mod n), so that ab +kn = 1 for some integer k. Therefore any com-
mon divisor for a and n is also a divisor of 1, and so gcd(a,n) = 1.

Conversely, assuming gcd(a,n) = 1, there are integers x and y such that ax +
ny = 1. But then ax ≡ 1 (mod n), and we are done.

The above proof is useful, as it shows how to find an inverse modulo n by solv-
ing the equation ax +ny = 1. Two integers a and n are called mutually prime, or
coprime, if gcd(a,n) = 1. The same is said of three or more integers if they are pair-
wise mutually prime.

The second corollary will be useful in proving uniqueness of prime factoriza-
tion.

Corollary 3. Let p be a prime number and a, b two nonzero integers. If p | ab then
p | a or p | b.

Proof. Assume that p | ab and p - a. Since p has no divisors other than 1 and p
(and their negatives) and p - a, we must have gcd(a, p) = 1. Thus we can write
ax + py = 1 for some integers x and y . Multiplying by b we get abx + pby = b.
Then p divides each term on the left, since p | ab, and so p | b.

Version 2011-10-04

5 Number theory

Primes and unique factorization

A prime number is defined to be an integer > 1 which is not divisible by any posi-
tive integer other than 1 and itself.

Notice that this definition is explicitly written to exclude 1. If we allowed 1 to be prime,
then unique factorization would fail, as for example 2 = 1 ·2 = 1 ·1 ·2 and so forth, resulting
in an infinite number of factorizations of the number 2.

Theorem 4 (Unique factorization). Every positive integer is the product of primes.
Moreover, this factorization is unique, in that if two different products of primes
produce the same integer then the two products involve the same primes the same
number of times.

To clarify what is meant by this, we consider the two prime factorizations

2 ·2 ·3 ·3 ·3 ·5 and 2 ·5 ·3 ·2 ·3 ·3

to be the same factorization (we prefer to write it as 223351). Obviously, since the
order of factors is irrelevant, they produce the same integer. The theorem states
that this sort of permutation is the only reason two products of primes can be
equal, so we can immediately tell that

223351 6= 233271

without doing any calculation at all (except to verify that 2, 3, 5 and 7 are primes).
We should also add that 1 is not an exception to the theorem: By convention, we consider

1 to be a product of no primes. (And the empty set is of course a set of primes, right?)

Proof. First, if there exists a positive number with no prime factorization, there
is a smallest such number. Call it a. Then a is not a prime number, for then it is
simply the product of itself (taken once). Thus a has a divisor b > 1 different from
a, so we can write a = bc for positive integers b and c. But then both b and c are
less than a, so each is a product of primes. Thus a is a product of primes, which is
a contradiction.

Second, if two products of primes produce the same product, we can cancel out
common prime factors on both sides until we end with an equality of the form

p1 · · ·pm = q1 · · ·qn

where the pi and q j are primes (possibly with repetitions) and pi 6= q j for all i , j .
But then p1 | q1 · · ·qn , and so by Corollary 3 (applied repeatedly if needed)

p1 | q j for some j . But since p1 is neither 1 nor q j , and q j is prime, this is a con-
tradiction.

Version 2011-10-04

Number theory 6

Euclid’s algorithm

We know that the greatest common divisor exists, but not yet how to compute it.
Clearly, computing ax +by for an infinite number of (x, y) and then picking the
smallest positive answer is not practical.

The idea behind Euclid’s algorithm is simple: Assume we wish to compute
gcd(a,b) where a > b > 0. Divide a by b to get a quotien q and remainder r :

a = qb + r, 0 ≤ r < b.

The crucial observation is that any common divisor of a and b divides r as well,
and any common divisor of b and r divides a. Therefore gcd(a,b) = gcd(b,r). Since
a > b > r , replacing the problem of computing gcd(a,b) by the problem of com-
puting gcd(b,r) is a simplification, in that we are now dealing with smaller num-
bers.

The following example shows this idea carried out in a systematic manner to
compute gcd(2328,2124). The left column shows the result of successive divisions,
while the right column shows what we conclude about the gcd’s from the results
on the left.

2328 = 1 ·2124+204 gcd(2328,2124) = gcd(2124,204)

2124 = 10 ·204+84 = gcd(204,84)

204 = 2 ·84+36 = gcd(84,36)

84 = 2 ·36+12 = gcd(36,12)

36 = 4 ·12 = 12

Thus Euclid’s algorithm for computing gcd(a,b) where a > b > 0 is as follows:

1. Write a = qb + r with 0 ≤ r < b.
2. If r = 0, gcd(a,b) = b and we are done.
3. Otherwise, compute gcd(b,r) and return the result.

In other words, replace (a,b) by (b,r) and start over.

Note that since the second number becomes progressively smaller (b gets replaced
by r , which is smaller, and so forth) this algorithm cannot continue forever, so it
will terminate. In fact, it is quite fast.

Notice how each remainder, after first showing up at the right, moves to the
middle and then the left in the left column above. Looking down the left side of
the equations, it becomes clear that all lines in the calculation have the same form
if we define a sequence (r0,r1,r2, . . .) with r0 = a, r1 = b, and rs , . . . being the suc-

Version 2011-10-04

7 Number theory

cessive remainders. We can then write the above calculation abstractly in the form

r0 = q2r1 + r2 gcd(r0,r1) = gcd(r1,r2)

r1 = q3r2 + r3 = gcd(r2,r3)

r2 = q4r3 + r4 = gcd(r3,r4)

· · · · · ·
We now turn to the problem of computing (x, y) so that ax + by = gcd(x, y). To
accomplish this, compute more generally (xi , yi) for i = 0,1,2, . . . so that

axi +byi = ri .

Thanks to the special definitions r0 = a, r1 = b we start out with (x0, y0) = (1,0) and
(x1, y1) = (0,1). Then, for i = 0,1, . . . we use the relation ri+2 = ri −qi+2ri+1 and see
that

(xi+2, yi+2) = (xi , yi)−qi+2(xi+1, yi+1)

does what we need. This is easy enough to program, but if we wish to carry out
the computations by hand, it can be difficult to keep track. Here is one possible
solution to this problem, first in the abstract formulation,

r0 = 1 ·a +0 ·b

r1 = 0 ·a +1 ·b

r0 = q2r1 + r2 r2 = x2a + y2b

r1 = q3r2 + r3 r3 = x3a + y3b

r2 = q4r3 + r4 r4 = x4a + y4b

· · · · · ·
where each equation (starting at the third row) in the right column follows from
the equation to its left and the two equations immediately above it. For example,
in the last row we find

r4 = r2 −q4r3 = x2a + y2b −q4(x3a + y3b) = (x2 −q4x3)a + (y2 −q4 y3)b,

so we compute x4 = x2 −q4x3 and y4 = y2 −q4 y3 and fill into the last row.
Again, for our concrete example:

2328 = 1a +0b

2124 = 0a +1b

2328 = 1 ·2124+204 204 = 1a −1b

2124 = 10 ·204+84 84 =−10a +11b

204 = 2 ·84+36 36 = 21a −23b

84 = 2 ·36+12 12 =−52a +57b

36 = 4 ·12

Version 2011-10-04

Number theory 8

Modular exponentiation

A much needed operation in several public-key cryptosystems is that of comput-
ing ax mod n, where the exponent x and the modulus n are both large integers
(typically a few hundred digits). Computing ax as a natural number and then re-
ducing modulo n will be utterly impractical, as ax will easily end up (much) larger

than 1010100
, and as such will not fit inside the computer.

Instead, we might use the algorithm of repeated squaring and reduction mod-
ulo n. Here, we illustrate the procedure on the toy example 519 mod 11. We start
with 5 and square it again and again, producing powers 52, 54, 58, 516 (where we
stop, since the next exponent, 32, is greater than 19). All congruences below are
modulo 11:

51 = 5

52 = 25 ≡ 3

54 = (52)2 ≡ 32 = 9

58 = (54)2 ≡ 92 = 81 ≡ 4

516 = (58)2 ≡ 42 = 16 ≡ 5

from which we finally conclude

519 = 516+2+1 = 516 ·52 ·51 ≡ 5 ·3 ·5 = 15 ·5 ≡ 4 ·5 = 20 ≡ 9 (mod 11).

You may recognize this as using the binary (base 2) representation

19 = 100112 = 1 ·24 +0 ·23 +0 ·22 +1 ·21 +1 ·20

(where the subscript 2 is used to indicate the base) together with the identity

a2k+1 = (
a2k)2

which justifies the repeated squaring. In general, the technique is to write the ex-
ponent as

x =
n∑

k=0
bk 2k with each bk ∈ {

0,1
}

and noting that then

ax =
n∏

k=0
abk 2k

.

The effect of bk is that when bk = 0, the corresponding term in the product is 1,

so we can skip it, and when bk = 1, we get a2k
, and those terms are computed by

repeated squaring, all the time reducing the answer modulo n since we only want
the final answer modulo n.

Version 2011-10-04

9 Number theory

If you use some sort of bignum package with your favourite computer language
(or if the language already has built-in support for big integers), it is worth looking
for a function that takes all three arguments a, x and n and computes ax mod n. If
the package is any good, it will use an algorithm much like the above. If you don’t
find such a function, write it yourself. As I mentioned, computing ax and then
reducing modulo n will simply not work if the numbers are large.

A further optimization could use the Chinese Remainder Theorem (CRT) if a factoriza-
tion of n is known: If n = uv with u, v mutually prime, compute ax mod u and ax mod v
and use the CRT to deduce the value of ax mod uv . This trick is often employed in the RSA
cryptosystem, where the factorization of the modulus is known to the owner of the private
key. (Users of the public key will not possess this information, but they will typically only
need to compute powers with smallish exponents, such as 216 +1.)

Diffie–Hellman key exchange. Diffie–Hellman key exchange, or D–H for short, is
a method for creating shared secrets while communicating over open channels.
Participants in a D–H scheme need to agree in advance on a large prime p and a
generator g . One wants the generator to be such that the every member of the set

Z∗
p = {

1,2, . . . , p −1
}

is congruent modulo p to some power g x . To participate, Alice selects a large secret
integer a. She computes A = g a mod p and publishes A. Similarly, Bob selects a
secret b and publishes B = g b mod p. Now Alice and Bob have a shared secret,
namely g ab mod p. Both of them can compute this, since

g ab ≡ B a ≡ Ab (mod p)

and Alice has all the information to compute B a while Bob can similarly compute
Ab .

Clearly, any outsider who is able to guess either a or b can also perform one
of these calculations. Finding x given the value of g x is called a discrete logarithm
problem (DLP), and is believed to be infeasible in general.

But note that it is not known that solving the DLP is necessary to crack D–H.
Even assuming access to a Diffie–Hellman oracle, meaning an entity that will tell
you the value of g ab mod p given g a mod p and g b mod p, this is not known to
provide enough information to solve the DLP.

The ElGamal cryptosystem. Alice wants everybody to be able to encrypt (rela-
tively short) secret messages to her. She picks a large prime p, a generator g mod-
ulo p, a secret number a, and she publishes p, g , and A = g a .

If Bob wishes to send Alice a secret message, he encodes it as a number m ∈Z∗
p .

He then picks a random integer r and computes

(R,T) = (g r , Ar m) mod p

Version 2011-10-04

Number theory 10

and transmits the pair to Alice.
To decrypt this message, Alice computes

m = R−aT mod p.

It is fairly easy (in fact, this is a good exercise) to show that breaking ElGa-
mal is equivalent to breaking Diffie–Hellman, in the sense that access to a Diffie–
Hellman oracle makes it trivial to find the message m given A, R, and T , access to
an ElGamal oracle makes it easy to break Diffie–Hellman.

The Chinese Remainder Theorem

This theorem, which we shall refer to as the CRT, can be viewed as the statement
that arithmetic modulo uv can be reduced to simultaneous arithmetic mod u and
mod v , provided that u and v are mutually prime.

First, notice that if we know the remainder of x modulo uv then we know the
remainder of x modulo u as well. To be more precise, if x ≡ y (mod uv) then x ≡ y
(mod u), and x ≡ y (mod v) as well. For then x − y is a multiple of uv , and there-
fore a multiple of both u and v .

Thus there is a natural mapping Zuv →Zu ×Zv , given by

x 7→ (x mod u, x mod v).

The CRT states that this mapping is a one-to-one mapping from Zuv to Zu ×Zv , if
gcd(u, v) = 1. However, it is not usually stated in such abstract language:

Theorem 5 (Chinese Remainder Theorem). Assume u and v are positive, mutually
prime integers, i.e., gcd(u, v) = 1. Then, for any two integers a and b there is an
integer x solving the simultaneous congruences

x ≡ a (mod u), x ≡ b (mod v).

Moreover x is unique modulo uv in the sense that if y is another solution then x ≡ y
(mod uv).

Proof. It is useful to begin with the uniqueness part. Since gcd(u, v) = 1 there exist
integers s and t so that

us + v t = 1.

Now assume that x solves the simultaneous congruences. Multiplying the first
by v and the second by u, we find

xv ≡ av (mod uv), xu ≡ bu (mod uv),

and therefore (using us + v t = 1)

x = xus +xv t ≡ bus +av t (mod uv).

Version 2011-10-04

11 Number theory

So any solution x is congruent to bus+av t modulo uv , which proves the unique-
ness part. Incidentally, it also provides an algorithm for finding the solution.

Thus we know what to do for the existence part: We simply put x = bus +av t .
The relation us + v t = 1 implies v t ≡ 1 (mod u), and so we find

x ≡ av t ≡ a (mod u).

The congruence x ≡ b (mod v) is proved the same way.

Fermat’s Little Theorem and Euler’sϕ function

We begin by stating Fermat’s Little Theorem (FLT) without proof, as it is a special
case of Euler’s theorem (to be proved below).

Theorem 6 (Fermat’s little theorem). If p is a prime number and a an integer so
that p - a, then

ap−1 ≡ 1 (mod p).

As an example, we compute 22010 mod 101. Noting that 101 is a prime, so FLT
says that a100 ≡ 1 (mod 101) whenever 101 - a. In particular, 22010 = 22000 · 210 =
(220)100 ·210 ≡ 1 ·1024 = 1010+14 ≡ 14 (mod 101).

For any positive integer n, recall Zn = {
1,2, . . . ,n −1

}
and let us define

Z∗
n = {

x ∈Zn : x is invertible modulo n
}= {

x ∈Zn : gcd(x,n) = 1
}
.

Euler’s ϕ function simply counts the elements of Z∗
n , so that the set Z∗

n has ϕ(n)
members by definition. In particular, if p is a prime number then

Z∗
p = {

1,2, . . . , p −1
}

and therefore ϕ(p) = p −1.

We can now state

Theorem 7 (Euler’s theorem). If n is a positive integer and gcd(a,n) = 1 then

aϕ(n) ≡ 1 (mod n).

It should be clear from the above that Fermat’s Little Theorem is in fact a special
case of Euler’s theorem.

Proof. Write a−1 for some inverse of a modulo n. It is clear that if x ∈ Z∗
n then

ax is invertible modulo n, since an inverse is given by a−1x−1. Conversely, if y is
invertible modulo n then y = ax for some invertible x, namely x = a−1 y . We see
that x determines y uniquely, and it follows that{

ax mod n : x ∈Z∗
n

}=Z∗
n

Version 2011-10-04

Number theory 12

and so ∏
x∈Z∗

n

x = ∏
x∈Z∗

n

(ax mod n)

because both products multiply together the same numbers. There are precisely
ϕ(n) factors in each product, so we conclude∏

x∈Z∗
n

x ≡ aϕ(n)
∏

x∈Z∗
n

x (mod n)

from this. Multiplying by an inverse of
∏

x∈Z∗
n

x yields the desired result.

We turn now to the question of computingϕ(n). Two results solve this problem
in general:

Proposition 8. If p is a prime number and k ≥ 1 then

ϕ(pk) = (p −1)pk−1.

Proof. Just note that gcd(x, pk) = 1 if and only if p - x. Among the pk numbers
in Zpk , p divides every p’th number, so a fraction 1/p of them is not invertible

modulo pk . The invertible ones will be the remaining fraction 1−1/p = (p −1)/p,
for a total of (p −1)/p ·pk = (p −1)pk−1 invertible members.

Proposition 9. If gcd(u, v) = 1 then

ϕ(uv) =ϕ(u)ϕ(v).

Proof. We will use the Chinese remainder theorem. I claim that a number c is in-
vertible modulo uv if and only if it is invertible modulo u and modulo v .

Certainly, an inverse of c modulo uv is also an inverse of c modulo u and mod-
ulo v both. Conversely, let a be an inverse of c modulo u and let b be an inverse of
c modulo v . By the CRT, there is some x with x ≡ a (mod u) and x ≡ b (mod v).
Then cx ≡ ca ≡ 1 (mod u) and cx ≡ cb ≡ 1 (mod v). By the uniqueness part of
CRT, cx ≡ 1 (mod uv) follows.

We have shown that the one-to-one mapping between Zuv and Zu ×Zv given
by the CRT is also a one-to-one mapping between the respective subsets Z∗

uv and
Z∗

u ×Z∗
v . But the latter has precisely ϕ(u)ϕ(v) members, and we’re done.

To compute ϕ(n) for any integer n is now easy, provided we know the prime
factorization of n. In fact, if p1, . . . , pm are distinct primes then

ϕ
(
pk1

1 · · ·pkm
m

)= (p1 −1)pk1−1
1 · · · (pm −1)pkm−1

m .

For example, since 2010 = 2 ·3 ·5 ·67 we find

ϕ(2010) = 1 ·2 ·4 ·66 = 528.

Version 2011-10-04

13 Number theory

Application to the RSA cryptosystem

Alice wants everybody to be able to encrypt (relatively short) secret messages to
her. To achieve this, she picks two large primes p and q and computes their prod-
uct m = pq . She keeps the primes secret, but publishes her modulus m. She also
picks an encryption exponent e so that gcd(e,ϕ(m)) = 1 and publishes that as well.
The pair (m,e) is Alice’s public key.

In the early days of RSA, e = 3 was not an uncommon choice. However, that is insecure
if the same message is encrypted for several recipients. These days, e = 216 +1 = 65537 (a
prime number) is a common choice.

To encrypt a message to Alice, Bob encodes the message as a number x ∈ Z∗
m ,

computes X = xe mod m and transmits to Alice.
To decrypt, Alice computes x ′ = X d mod m where the d is an inverse of e mod-

ulo ϕ(m).
To see why this works, assume that gcd(x,m) = 1. Then by Euler’s theorem,

xϕ(m) ≡ 1 (mod m). Also, since ed ≡ 1 (mod ϕ(m)), we have ed = 1+ kϕ(m) for
some integer k. So we find

x ′ ≡ X d ≡ (xe)d = xed = x1+kϕ(m) = x · (xϕ(m))k ≡ x ·1k = x.

Finally, we get x ′ = x since x, x ′ ∈Zm .
It is a curious fact that RSA works even for messages x ∈ Zm which are not mutually

prime to m. (I skip the proof here.) However, this is not so important. First, if x = 0 then
X = 0 as well, but anybody can decrypt X = 0, so this is not secure. (In fact RSA is not secure
for any really small x, since an adversary can easily compute a table of xe for small x and
compare with an observed X .) Second, if 1 < x < m and gcd(x,m) > 1 then gcd(x,m) ∈{

p, q
}
. But in that case, since Bob can easily compute gcd(x,m), he has in fact stumbled

upon the factorization of m, thus having broken the security of Alice’s secret key.
To save herself some work, Alice only needs compute the decryption exponent d once.

She can then use it to decrypt all incoming messages, but she must of course keep it secret.
She can save herself even more work by exploiting the Chinese Remainder Theorem. To

decrypt X , she only needs to compute X d mod p and X d mod q and combine the results
using the CRT. Better still, those two numbers can be computed as X d mod (p−1) mod p and
X d mod (q−1) mod q , thanks to Fermat’s little theorem.

For RSA to be secure, it is clearly necessary that no outsiders can compute d .
Since computing modular inverses is easy, it is important that nobody can com-
puteϕ(m). We know thatϕ(m) = (p−1)(q−1) = pq−p−q+1. Since pq is known to
the public, computing ϕ(m) is equivalent to computing p + q . But someone who
knows m = pq and n = p +q can easily compute p and q , since then

(p −q)2 = n2 −4m

so the attacker now knows p +q and p −q and can get p and q easily enough.
At the beginning of this section, I stated that RSA with encryption exponent

e = 3 is insecure if used to encrypt the same message x to several recipients. More

Version 2011-10-04

Number theory 14

precisely, assume we are given public moduli m1, m2, and m3. Assume further
that Bob computes Xi = x3 mod mi for i = 1, 2, 3 and transmits all three values.
If you intercept all of them, you may be well assured that the moduli m1, m2, m3

are mutually prime, so you can use the Chinese remainder theorem to compute
X = x3 mod m1m2m3 by solving the congruences X ≡ Xi (mod mi) for i = 1, 2, 3.
However, by the way RSA encodes messages, we must have 1 < x < mi for i = 1, 2, 3,
so 1 < x3 < m1m2m3. Thus X = x3 (with no reduction modulo m1m2m3 needed),
and extracting the cube root of X to discover the value of x is easy.

Primality testing

Large primes are needed for Diffie–Hellman, ElGamal and RSA. Yet, finding large
primes can seem quite difficult. The naïve way to check whether an integer n is
prime is by trial division: For every a with 1 < a ≤ p

n (it is enough to consider
prime numbers a), check whether a | n. Only if the answer is no for every a, can we
be assured that n is prime. Even for n of relatively modest size (in this connection),
such as n ≈ 2160, we end up having to do 280 trial divisions. This is an impossible
task. So other methods are needed.

It was quite a sensation when a polynomial time deterministic primality test
was discovered in 2002. By this is meant a test that provides a definite answer to the
question whether a given number n is prime or not within a time that is bounded
above by a polynomial in logn (the current best such estimate is a constant times
(logn)6).

Polynomial-time probabilistic primality tests have been known far longer, and
are still widely used in practice, as they are both simpler and faster and can provide
an answer with any desired degree of confidence.

These tests have two possible outcomes: Either they prove conclusively that n
is composite, or they don’t, in which case one can conclude that n is likely prime.

The Fermat test. To illustrate these ideas, consider the Fermat test. This is based
on Fermat’s little theorem, that if p is prime then ap−1 ≡ 1 (mod p) for every a
with 1 < a < p.

The test is simple enough: To see if a number n is prime, pick a random a with
1 < a < n, compute an−1 mod n and see if the answer is 1. If it isn’t, n is certainly
composite, and a is called a Fermat witness to the compositeness of n. Otherwise,
repeat the procedure a number of times.

Unfortunately, there are some composite numbers, called Carmichael num-
bers, that are unusually likely to pass the Fermat test. To be precise, a Carmichael
number is a composite number n so that an−1 ≡ 1 (mod n) whenever gcd(a,n) =
1. Though Carmichael numbers are quite rare, it is known that there exist an infi-
nite number of them.

Version 2011-10-04

15 Number theory

Alwin Korselt proved in 1899 that n is a Carmichael number if and only if n is square
free (if a > 1 then a2 - n) and for every prime p, if p | n then (p −1) | (n −1). The smallest
Carmichael number is 561 = 3·11·17. It was found by Robert Carmichael in 1910; hence the
name.

Despite the possible problem with Carmichael numbers, the Fermat test is of-
ten used as a first step (typically with a = 2) to rapidly weed out non-primes before
subjecting surviving candidates to more rigorous tests.

The Miller–Rabin test. Fortunately, a proper primality test can be based on a slight
extension of Fermat’s little theorem.

Before we state this theorem, however, we state and prove a simple lemma on
square roots modulo a prime.

Lemma 10 (Uniqueness of square roots modulo p). Let p be a prime number. If a
and b are numbers so that

a2 ≡ b2 (mod p)

then a ≡±b (mod p).

Proof. Since a2−b2 = (a−b)(a+b) we find (a−b)(a+b) ≡ 0 (mod p), which is the
same as saying p | (a −b)(a +b). Since p is prime, according to Corollary 3 either
p | (a −b) or p | (a +b), that is either a −b ≡ 0 or a +b ≡ 0 (mod p).

We may note in passing that the above property does not hold if the prime p is replaced by a
composite number n. First, if n is a prime power, that is n = pr for some prime p and r > 1,
then picking a = pk with k < r and 2k ≥ r and b = 0 yields a counterexample. Otherwise,
if n is composite we can write n = uv for mutually prime numbers u, v > 1 (with u 6= 2).
By the Chinese remainder theorem there exists a solution a to the congruences a ≡ −1
(mod u) and a ≡ 1 (mod v). But then we know a2 ≡ 1 (mod uv), thanks to the uniqueness
part of the CRT and the fact that this congruence holds modulo u and v both. So we have a
counterexample with b = 1.

Lemma 11 (Miller–Rabin). Let p be an odd prime and write p−1 = 2s r with r odd.
If 1 < a < p then either

ar ≡ 1 (mod p), or

a2 j r ≡−1 (mod p) for some j ∈ {
0, . . . , s −1

}
.

Proof. Let k be the smallest nonnegative integer so that a2k r ≡ 1. There certainly is
such an integer, and k ≤ s, since a2s r = ap−1 ≡ 1 by Fermat’s little theorem. If k = 0

we have the first case. Otherwise, put j = k −1 and let b = a2 j r . Then b2 = a2k r ≡
1 = 12. By Lemma 10, b ≡±1. But b 6≡ 1 by the minimality of k, so b ≡−1.

We can now describe the Miller–Rabin primality test as follows:
We are given an odd integer n > 1 and wish to decide whether n is prime. First

of all, write n = 2s r with r odd.
Next, perform the following computation:

Version 2011-10-04

Number theory 16

1. Pick a random number a with 1 < a < n.
2. Compute ar mod n. If the answer is 1, stop; n is possibly prime.

3. Otherwise, compute a2 j r mod n for j = 1,2, . . . , s−1. If the answer is con-
gruent to −1 (i.e., equal to n −1), stop; n is possibly prime.

4. Otherwise (i.e., after completing the previous step for j = 1,2, . . . , s − 1
without stopping), n is definitely composite. In this case, we call a a
Miller–Rabin witness to the compositeness of n.

Notice that after the computation of ar mod n in step 2, the subsequent computations of

a2 j r mod n for j = 1,2, . . . , s − 1 are easily performed by successively squaring the previ-

ous result modulo n. Also, if we find in step 3 that a2 j r ≡ 0 or a2 j r ≡ 1, then obviously no
amount of further squaring will yield the result −1, so one might as well stop right away and
declare n composite.

The full Miller–Rabin test consists of repeating the above procedure for dif-
ferent random a until either n has been shown to be composite, or t different a
have been tried without such a result, in which case you declare that n is probably
prime.

It can be shown that if n is composite, then at least three quarters of all the
numbers in

{
2, . . . ,n−1

}
are witnesses to the compositeness of n, and so the Miller–

Rabin test will fail to show that n is composite with a probability less than 4−t ,
which goes quite rapidly to zero as t grows bigger. For example, with t = 40 there
is at most a probability 2−80 of failing to show that a composite number is in fact
composite.

It is worth noting that there is no (known) way to find a non-trivial factor of n
given a (Fermat or Miller–Rabin) witness to the compositeness of n. It is in general
much harder to find non-trivial factors of a number than showing it is composite.

Finding large primes. To find a large prime, say with r bits, a good procedure is
to pick a random r -bit odd number n and to test it for primality. If it fails, pick
another one and start over.

It is not a good idea to replace n by n+2 instead; the reason is that gaps between primes
are quite variable in length, and this procedure would favour primes with long gaps in front
of them, thus perhaps easing the task of a potential adversary trying to guess your choice
of prime number. Also, if you were unlucky enough to find yourself in a large gap, finding
a prime could take a long time. Gaps between prime numbers can be arbitrarily large: For
any number m > 1, all the m −1 numbers m!+2, m!+3, . . . ,m!+m are composite.

To speed up the testing phase, consider trial division with small primes as a first
step. Or better yet, compute gcd(n,b) where b is a product of small primes such as
b = 3 ·5 ·7 ·11 ·13 ·17 ·19. If the answer is not 1, n is composite.

Then apply the Miller–Rabin test to the survivors.
Although the Fermat test is easier to describe (and to program) than the Miller–Rabin

test, you may note that the latter does almost no work that is not already needed for the
former. And of course, a Fermat witness to compositeness is also a Miller–Rabin witness,

Version 2011-10-04

17 Number theory

so given that we wish to employ Miller–Rabin anyhow, there is little point in screening with
the Fermat test.

Of course, if your prime is extremely important to you and you have the computational
resources to do it, by all means go ahead and perform a rigorous (non-probabilistic) test
after a suitable number of rounds of Miller–Rabin. Such tests are beyond the scope of this
text, however.

Primality testing versus factoring. I stated above that there is no known way to
find a non-trivial factor given a witness to compositeness. While this is true in
general, there are exceptions.

First, even a Carmichael number n can fail the Fermat test, since gcd(a,n) 6=
1 implies an−1 6≡ 1 (mod n). (For otherwise, a has the inverse an−2 modulo n.)
However, if you have come across some a with 1 < a < n and gcd(a,n) 6= 1 then
gcd(a,n) is a non-trivial factor of n, so doing the Fermat test computation is just
wasted effort if you are looking for factors.

Second, if you stopped the Miller–Rabin test because a2 j r ≡ 0 or a2 j r ≡ 1 for

some j > 1, you can find a non-trivial factor. For in this case, b = a2 j−1r is a non-
trivial square root of either 0 or 1 modulo n.

In the first case, if b 6≡ 0 but b2 ≡ 0 (mod n) then b is not invertible modulo n, so
gcd(b,n) > 1. (In this case, a isn’t invertible either, so you could have saved some
work by computing gcd(a,n) directly.)

In the second case, we have b2 ≡ 1 but b 6≡ ±1 (mod n). But then (b−1)(b+1) =
b2 − 1 ≡ 0 (mod n), so n | (b − 1)(b + 1), and at least one of b ± 1 has a common
factor with n.

At first glance, this could seem a good way to find factors, but at least for the
RSA case (product of two large primes), this case turns out to happen too rarely to
be useful.

Finding safe primes and generators. A safe prime is a prime p so that (p −1)/2 is
also a prime. Equivalently, it is a prime of the form p = 2q + 1 where q is prime.
(We may return to the reason for this terminology at a later point.) Focusing on q
instead, a Sophie Germain prime is a prime q so that 2q +1 is prime.

One reason for working with these primes is that it is easy to check whether
some a is a generator of Z∗

p when p is a safe prime. The reason is the following
simple lemma:

Lemma 12. Let n be a positive integer, and a ∈Z∗
n . Then there is a smallest positive

integer r such that ar ≡ 1 (mod n). This integer, which is called the order of a, is a
divisor of ϕ(n).

Proof. Since Z∗
n is finite, the powers ax cannot all be different modulo n, so there

are integers 0 ≤ x < y with ax ≡ ay (mod n). Since a is invertible modulo n, ay−x ≡
1 (mod n) follows, and the existence of r is assured.

Version 2011-10-04

Number theory 18

Now write ϕ(n) = qr + s with 0 ≤ s < r . We find

as = aϕ(n)−qr = aϕ(n)(ar)−q ≡ 1 (mod n)

by Euler’s theorem and ar ≡ 1. Since r is the smallest positive integer with this
property, s = 0, and so r |ϕ(n).

Applying this to safe primes, we find

Lemma 13. Let p = 2q +1 be a safe prime, and a ∈Z∗
p . Then a is a generator of Z∗

p

if and only if a2 6≡ 1 and aq 6≡ 1 (mod p).

Proof. Recall that a is called a generator if the powers of a fill up all of Z∗
p . Clearly,

this is equivalent to the period of a being p −1. If this is so, then a2 6≡ 1 and aq 6≡ 1
(mod p).

Conversely, if the above two non-equivalences hold, knowing that the order r
of a satifies r | ϕ(p) = p −1 = 2q , the only possibilities are r = 1, r = 2, r = q , and
r = pq . The assumptions rule out all the possibilities except the final one.

To find a generator of Z∗
p where p is a safe prime, then, we only need to pick

a ∈Z∗
p at random and test them using the above lemma until we find a generator.

There are exactly two solutions (modulo p) to x2 ≡ 1 and q solutions to xq ≡ 1, so
the probability that a randomly chosen a will be a generator is about 1/2, and the
search should not need to take very long.

Next, how do we find safe primes, or equivalently, how do we find Sophie Germain
primes?

The obvious strategy is to first find primes q using strategies described previ-
ously, i.e., picking random q and then applying the Miller–Rabin test. Then, once
a (probable) prime q has been found, we can check whether n = 2q +1 is prime as
well. We could use the Miller–Rabin test again, but there is a quicker way, based on
the assumption that q is prime.

Here is how: Assume that n = 2q+1, where q is prime. First we apply the Fermat
test with some a. Assuming it passes, we have an−1 ≡ 1 (mod n). Hang on to that
a; we will use it again.

Next, assume that n is in fact composite. We shall try to get a contradiction. So
there is a prime p | n with p ≤p

n. Clearly p −1 < q , so gcd(p −1, q) = 1 since q is
prime. From this we conclude that q is invertible modulo p −1, i.e., there is some
u with

qu ≡ 1 (mod p −1) (2)

We return to the relation an−1 ≡ 1 (mod n), which we now write a2q ≡ 1
(mod n). Taking the u-th power of this we have a2qu ≡ 1 (mod n) and therefore,

Version 2011-10-04

19 Number theory

in particular, a2qu ≡ 1 (mod p). From Fermat’s little theorem and (2) we conclude
a2 ≡ 1 (mod p) (exercise: show this). In other words p | (a2 −1), and so

gcd(a2 −1,n) 6= 1.

Now if, on the contrary, we find

gcd(a2 −1,n) = 1

we have the desired contradiction, and it follows that n must be prime.
Getting this contradiction is in fact quite likely if n is prime, so this is a useful

test.
The above proof generalizes readily into a proof of the following:

Theorem 14 (Pocklington). Assume that n = bq+1 with q a prime number. Assume
further that a is a number, and

q >p
n −1,

an−1 ≡ 1 (mod n),

gcd(ab −1,n) = 1.

Then n is a prime number.

I skip the proof, which is just like the above, with the number 2 replaced by b.
But I will make one remark: The requirement q >p

n −1 is need for the inequality
p −1 < q , which was important in the proof.

Quadratic residues

An integer a is called a quadratic residue modulo n if it is congruent modulo n to
a square:

a ≡ x2 (mod n) for some x ∈Z.

For any given quadratic residue a, any x satisfying the above equation is called a
square root of a modulo n.

The question of deciding if a given number is a quadratic residue, and if so to
compute its square roots, is radically different depending on whether n is a prime
or not. We deal with the case of odd primes first (obviously, every number is a
quadratic residue modulo 2).

Quadratic residues modulo an odd prime p.
First we note that if x is a square root of a then so is −x. Furthermore, x and −x

are the only square roots of a. To be precise, assume that x and y are two square
roots of a. Then

(x − y)(x + y) = x2 − y2 ≡ 0 (mod p).

Version 2011-10-04

Number theory 20

Thus either x−y ≡ 0 or x+y ≡ 0, so that x ≡±y (mod p). (This apparently obvious
statement needs justification: By the above, p | (x−y)(x+y) so p divides one of the
factors, since p is prime.)

In particular, the only square roots of 1 modulo p are ±1. But Fermat’s little
theorem implies that (

a
p−1

2

)2 = ap−1 ≡ 1 (mod p)

and therefore1

a
p−1

2 ≡±1 (mod p) (3)

whenever gcd(a, p) = 1. Moreover, subsituting a = x2 yields xp−1 ≡ 1, so we obtain
the plus sign above when a is a quadratic residue.

A trick similar to the above lets us compute square roots modulo p easily in the
case when p +1 is divisible by 4 – or equivalently, when p ≡ 3 (mod 4). For then(

a
p+1

4

)2 = a
p+1

2 = a
p−1

2 +1 = a
p−1

2 a =±a,

so that x = a(p+1)/4 is a square root of ±a. Thus the sign in equation (3) completely
settles the question of whether a is a quadratic residue in the case p ≡ 3 (mod 4).

Proposition 15 (Euler’s criterion). An integer a is a quadratic residue modulo an
odd prime p if and only if either a ≡ 0 (mod p) or a(p−1)/2 ≡+1 (mod p).

This is still true, but harder to prove, when p ≡ 1 (mod 4). The result can be established by
a counting argument: Since the mapping x 7→ x2 is two-to-one from Z∗p to itself, precisely
one half of the members ofZ∗p are quadratic residues. They are also zeros of the polynomial
xq −1 where q = (p −1)/2. But this polynomial can have at most q zeros.

It is also trickier to find square roots in the case p ≡ 1 (mod 4). We will not consider this
problem further.

Quadratic residues modulo a composite number n. If n is composite but not a
prime power, we can factor it as n = uv with u, v > 1 and gcd(u, v) = 1. Then in
general x | n if and only if x | u and x | v . This implies that any congruence holds
modulo n if and only if it holds modulo u and v both. In particular, y ≡ x2 (mod n)
if and only if y ≡ x2 (mod u) and y ≡ x2 (mod v). Thus if a is a quadratic residue
modulo n then it is also quadratic residue modulo u and v .

We can prove the converse using the Chinese remainder theorem: If a ≡ y2

(mod u) and a ≡ z2 (mod v) then there is a solution x to the simultaneous con-
gruences x ≡ y (mod u), x ≡ z (mod v), and then y ≡ x2 (mod n) since this holds
modulo u and v .

1a(p−1)/2 mod p is known as a Legendre symbol. There are more efficient algorithms for computing
it by using properties of the more general Jacobi symbol.

Version 2011-10-04

21 Number theory

However, we have more freedom of signs now: We can find square roots of a
from the simultaneous congruences

x ≡±y (mod u), x ≡±z (mod v)

where all four choices of signs are available to us. Thus we usually get at least four
different square roots for a, the exception being when y = 0 or u is even and y =
u/2 (or ditto for z, v).

Thus we see that knowing a non-trivial factorization of n allows us to find non-
trivial solutions of x2 ≡ y2. The converse is also true:

Lemma 16. If x2 ≡ y2 but x 6≡ ±y (mod n) then gcd(n, x − y) is a nontrivial factor
of n.

Proof. Clearly d = gcd(n, x − y) is a factor of n. To show it is a nontrivial factor, we
start with

(x − y)(x + y) = x2 − y2 ≡ 0 (mod n), (4)

in other words n | (x−y)(x+y). But n - (x−y) since x 6≡ y , so d < n, since d | (x−y).
Also d > 1, for if d = 1 then x − y is invertible modulo n, and we could multiply (4)
by an inverse of x − y to get x + y ≡ 0 (mod n), and this is assumed not to be the
case.

The above lemma lurks at the heart of various factorization algorithms. To find
a nontrivial factorization of n, it is enough to find nontrivial solutions to x2 ≡ y2.

Factoring

By factoring an integer n we mean finding the primes pi and their corresponding

exponents ki in the factorization n = pk1
1 · · ·pkm . One typically proceeds by merely

finding a nontrivial factor x, i.e., an integer satisfying 1 < x < n and x | n. Then we
have n = x y with x, y > 1, and we can repeat the procedure on each of the factors
x and y , continuing until only prime factors are found.

Pollard’s ρ algorithm. This algorithm finds moderately sized factors of n quickly.
If n has only small prime factors, or more generally just one large prime factor, it
can thus be completely factored quickly.

We begin with a simple observation. Assume that p | n for a moderately sized
prime p. Given two distinct integers that are congruent modulo p, subtraction
yields x 6= 0 with x ≡ 0 (mod p), in other words p | x. Thus gcd(x,n) > 1, and given
just a little bit of luck gcd(x,n) will be a nontrivial factor of n.

To use this observation, we only need to come up with a systematic way of se-
lecting pairs (x, y) of integers that are more likely than average pairs to be mutually
congruent modulo p (keeping in mind that we don’t actually know p of course).

Version 2011-10-04

Number theory 22

To do this, we use a function f : Zn → Zn . This function needs be such that
f (x) mod p will only depend on x mod p, so that there is also a function g : Zp →
Zp such that g (x mod p) ≡ f (x) (mod p) for all x ∈Zn .

A good example of such a function is f (x) = x2+1 mod n: The corresponding g
is given by g (x) = x2 +1 mod p. It satisfies the requirement if p | n (but not other-
wise).

Now we iterate: Pick some x0 ∈Zn , then put

xi = f (xi−1)

for i = 1, 2, We note that the sequence (x̄i), where x̄i = xi mod p, is also given
by an iterative formula:

x̄i = g (x̄i−1).

Since Zp is finite, the sequence (x̄i) will sooner or later begin to repeat itself (and
hopefully much sooner than (xi) does), so that x̄i+k = x̄i for all sufficiently large i
and some k called the cycle length.

Our next ingredient is Floyd’s cycle finding algorithm: If we put ȳi = x̄2i then
sooner or later (for sufficiently large i) both x̄i and ȳi will have entered the cycle,
and ȳi moves two steps around the cycle for each single step of x̄i . So ȳi gains one
step on x̄i per iteration, and will sooner or later catch up, at which point ȳi = x̄i .

To make the algorithm practical, we don’t keep track of the index i , just use one
variable x for xi and another y for x2i . Here, then, is Pollard’s ρ algorithm.

Put x ← 2, y ← 2.
Repeat x ← f (x), y ← f

(
f (y)

)
until either

– x = y , in which case the algorithm failed, or
– we just plain give up, or
– gcd(|x − y |,n) > 1, in which case that is a nontrivial factor of n.

Note that it is the final test that is likely to be triggered when we have arrived at a
point where x ≡ y (mod p). But we could be unlucky and have the first test trig-
gering instead. If so, retrying with a different function might help.

The Fermat factoring method. The security of RSA depends on the difficulty of
factoring n = pq when p and q are large primes. Clearly, Pollard’s ρ is of no use
here! The existence of the Fermat method, on the other hand, demonstrates the
importance of not having p and q very close together. It works as follows:

The goal is to factor n as n = (x − y)(x + y) = x2 − y2. If the two factors are very
close together, that means y is small and x =

√
n + y2 ≈p

n.
Notice that x2 = n + y2 implies x d x = y d y , so if y ¿ x then y will vary much

faster than x. Because we are looking for integer solutions, it is much more effi-
cient to step x through integer values than to do the same for y :

Set x ← ⌈p
n

⌉
(the smallest integer ≥p

n).

Version 2011-10-04

23 Number theory

While x2 −n is not a square, set x ← x +1.
Now n = (x − y)(x + y), where x2 −n = y2.

Assuming n = pq with primes p ≤ q , this algorithm stops when p = x − y and
q = x+ y . That is, it stops when x = (p+q)/2. Thus the number of steps required is

N = p +q

2
−⌈p

n
⌉≈ p +q

2
−p

n.

Multiply by 1
2 (p +q)+p

n ≈ 3
2

p
n:

3
2

p
nN ≈

(p +q

2

)2 −n =
(q −p

2

)2
(using n = pq)

and conclude that

N ≈ (q −p)2

6
p

n

is the approximate number of steps required.
For this to be about as hard as trial division, we would like to have N be of the

same order of magnitude as
p

n. We achieve this by requiring q − p to be of the
same order of magnitude as p and q themselves. For example, if p < 1

2 q then n is
quite resistant to Fermat factoring.

The quadratic sieve. This method and its more advanced variations is the most ef-
ficient general factoring algorithm currently available. It works by collecting many
numbers x ∈Z∗

n such that x2 mod n is a product of small primes, then multiplying
together a selection of these. The product will again be a product of small primes.
If we can arrange that all these primes appear an even number of times in the
product, then we have arrived at a congruence a2 ≡ b2 (mod n) that just might
factor n.

In more detail, assume we have collected l such numbers, all of whose squares
are congruent to a product of the first k primes p1, . . . , pk :

x2
j ≡ p

µ1 j

1 · · ·p
µk j

k (mod n), j = 1, . . . , l (5)

We multiply together some of them. Encode the choice in a vector (ξ1, . . . ,ξk) with
each ξ j ∈

{
0,1

}
: Then

(
xξ1

1 · · ·xξl
l

)2 ≡ pη1
1 · · ·pηk

k (mod n) (6)

where

ηi =
l∑

j=1
µi jξ j , i = 1, . . . ,k.

Version 2011-10-04

Number theory 24

We need each ηi to be even in order for the product pη1
1 · · ·pηk

k to be a square: Thus
we need to solve the congruences

l∑
j=1

µi jξ j ≡ 0 (mod 2), i = 1, . . . ,k.

This is a set of k homogeneous linear equations in l unknowns, so can find a non-
trivial solution if l > k. (The theory of linear equations in Z2, or more generally in
Zp for a prime p, is virtually identical to the better known linear algebra with real
or complex numbers.)

Finally, having solved the system so that each ηi is even, we see that (6) takes

the form a2 ≡ b2 (mod n), where a = xξ1
1 · · ·xξl

l and b = pη1/2
1 · · ·pηk /2

k . However,
this does not always lead to a nontrivial factor of n, so it is a good idea to collect
enough xi so one can try different possibilities with l = k +1.

The remaining question is how one finds numbers xi satisfying (5). One very
simple idea is to ensure that x2

i mod n is small. Then it is more likely that the prime
factors of this number are small, and in particular not greater than pk . So we can
look for xi among numbers only slightly larger than

p
n (or more generally

p
cn for

integers c ≥ 1). Beyond this simple idea, there are various techniques for speeding
up the search that we will not cover here.

The quadratic sieve is quite good for factoring numbers up to around 100 digits
or so. For bigger numbers, a more complicated, related method called the general
number field sieve (GNFS) is currently the best available.

These methods are very well suited for parallel computation, as the first step –
the sieving, or collection of the xi – can be done independently by many comput-
ers searching different parts of the space of likely candidates.

In December 2009, a 768 bit (232 decimal digit) RSA number was factored using
the GNFS. The effort took at least 2000 CPU years, with several hundred computers
participating in the sieving process. It is estimated that factoring a 1024 bit RSA
number (a popular key size in current RSA usage) is about 1000 times harder. This
could soon be within reach of a serious large scale effort!

The discrete logarithm problem

When p is a prime and g ∈Z∗
p is a generator, the discrete logarithm problem (DLP)

is the problem, given y ∈Z∗
p of finding the (unique) x ∈Zp−1 so that

g x = y.

(If g is not a generator, a solution may not exist, or it will not be unique if it exists.
We might still call this a discrete logarithm problem, but it will not interest us.)

Version 2011-10-04

25 Number theory

The Pohlig–Hellman algorithm. This is an algorithm that works well if all the
prime factors of p − 1 are known and of moderate size. If so, we can find those
factors using Pollard’s ρ algorithm. Because of this, one should avoid using such
primes in cryptographic applications whose security relies on the difficulty of the
DLP.

The algorithm has three parts.

If q is a prime and q | p −1 then we can find x mod q .
More generally, if qr | p −1 then we can find x mod qr .
Finally, if p −1 = qr1

1 · · ·qrm
m with distinct primes qi and we know x mod qri

i
for each i then we can find x mod p −1 using the Chinese remainder theo-
rem.

The final point is straightforward, so we concentrate on the first two.
First, when y = g x then a simple application of Fermat’s little theorem yields

y
p−1

q = g
p−1

q x ≡ g
p−1

q k0 (mod p) if x ≡ ko (mod q).

So if we compute all the values (obviously it is important in this step that q not be
too large)

g
p−1

q k mod q, k = 0,1, . . . , q −1,

then a simple comparison is sufficient to find k0 = x mod q .
Second, we take the case r = 2, i.e., q2 | p−1. Write x = x1q+k0, where we found

k0 previously. Define y1 ∈Z∗
p so that

y1 ≡ g x1q = g−k0 y (mod p).

So we know y1, but not yet x1. We take a suitable integer power of y1:

y
p−1

q2

1 ≡ g
p−1

q x1 ≡ g
p−1

q k1 (mod p) if x1 ≡ k1 (mod q).

Again, we can find k1 by comparison. As before we have x1 = x2q+k1 and therefore
x = x2q2 +k1q +k0, and x ≡ k1q +k0 (mod q2) is known.

If q3 | p −1 we can find x mod q3 in the same way starting from x2, and so on
up to the largest power r with qr | p − 1, thus completing the second part of the
algorithm.

The index calculus. This method tries to solve the discrete logarithm by focus-
ing the effort on products of small primes. It is very similar to the quadratic sieve
method for factoring.

Version 2011-10-04

Number theory 26

So let p be an odd prime and g a generator ofZ∗
p . Let p1, . . . , pk be the k smallest

primes. We look for exponents γ so that gγ mod p is a product of powers of these
primes. Collecting a large enough number of these, we have

gγ j ≡ p
µ1 j

1 · · ·p
µk j

k (mod n), j = 1, . . . , l

Next, we look for an exponent β so that

y g−β ≡ pη1
1 · · ·pηk

k (mod p),

and finally we try to write pη1
1 · · ·pηk

k as a power of g by trying to find ξ j with

pη1
1 · · ·pηk

k ≡ gγ1ξ1+···+γl ξl (mod p),

which will be so if

ηi ≡
l∑

j=1
µi jξ j (mod p −1), i = 1, . . . ,k.

This is a linear set of k equations in l unknowns. The theory of such equations is
not quite so straightforward since p − 1 is not a prime number, so the existence
of a nontrivial solution when l > k is not guaranteed. But we can compensate by
picking l somewhat larger, and once we have a nontrivial solution, we are done,
with the final answer

x =β+γ1ξ1 +·· ·+γlξl mod p −1 satisfying y ≡ g x (mod p).

How do we pick the number k of primes to use in the algorithm? This does not seem so easy.
If k is too small then the search for γ j and β will take too long. Making k bigger produces
more hits in the search, but then of course we need more hits (bigger l), and the linear
system to solve at the end becomes bigger and harder to solve. To select k intelligently, we
must estimate the proportion of Z∗p that are products of powers of p1, . . . , pk as a function
of k and use this to find an optimal value of k.

Applications: Commitment and discrete log hash

The Pedersen commitment scheme and (a variant of) the discrete log hash func-
tion, described below, use the same mathematical framework, based on a Sophie
Germain prime q and its corresponding safe prime p = 2q +1. We write Qp ⊂ Z∗

p
for the set of invertible quadratic residues modulo p. Recall that exactly half of all
the p − 1 = 2q members of Z∗

p belong to Qp . (This follows from the fact that, on
one hand, x and −x have the same square, and on the other, no number can have
more than two square roots modulo a prime, so the map x 7→ x2 is a two-to-one
map Z∗

p →Qp .) Thus Qp has q members.

Version 2011-10-04

27 Number theory

Now, if γ is a generator of Z∗
p then γk ∈Qp if and only if k is even. In particular,

with g = γ2 we find that the powers g 0, g 1, . . . , g q−1 are all distinct and together
fill up Qp . (Of course, g q = γ2q = γp−1 ≡ 1 (mod p) by Fermat’s little theorem.) We
call such a g a generator of Qp .

We shall need two generators g and h of Qp that are independent in the sense
that nobody can solve the equation g ξ ≡ h (mod p) for ξ. This should involve
whoever chose g and h to begin with, and could be achieved by picking two “noth-
ing up my sleeve” numbers: For example, let g be the smallest generator, and let
h be the smallest generator greater than p/

p
2. Without such safeguards, who-

ever picked the generators could just pick a generator g and some random a, pick
h = g a , and remember a for later use. This would defeat both of the schemes be-
low.

The Pedersen commitment scheme. The Pedersen commitment scheme has the
following features:

To commit to a message x, Alice computes a “commitment” c and makes it
available to others.
The computation uses a random value r in such a way that knowledge of
c reveals no information about x, even to an entity with infinite computa-
tional resources.
When Alice wishes to reveal x to Bob, she tells him the values of x and r . Bob
recomputes c based on x and r and checks that the result matches Alice’s
original commitment.
If two different pairs (x,r) and (x ′,r ′) yield the same commitment, these val-
ues can be used to solve a specific instance of the discrete logarithm prob-
lem (DLP). To the extent that Bob considers this an impossible task, he must
therefore believe that the message received is the message which Alice orig-
inally committed herself to.

Using the above framework consisting of a safe prime p = 2q +1 and generators g
and h of Qp , here is how to compute the Pedersen commitment for a message x ∈
Zq : Pick a random r ∈Zq , drawn from the uniform distribution on Zq . Compute

c = g x hr mod p.

Why Zq ? Notice that if y ≡ x (mod q) then g y = g x+nq ≡ g x (mod p) because g q ≡ 1
(mod p). That is, g x mod p depends only on x mod q .

First, knowledge of c reveals no information about x because hr is a random
member of Qp . In fact, since the map r 7→ hr is a one-to-one map from Zq onto
Qp , hr is drawn from the uniform distribution on Qp . But then the same is true of
g x hr mod p, since multiplication by g x modulo p is likewise a one-to-one map of
Qp onto itself.

Version 2011-10-04

Number theory 28

Second, if we can find two different messages with the same commitment
string, then can solve the equation g ξ = h for ξ: For assume that c ≡ g x hr ≡ g x ′

hr ′

(mod p) with x 6≡ x ′ (mod q). From this we get

g x−x′ ≡ hr ′−r (mod p).

From x − x ′ 6≡ 0 (mod q) we conclude g x−x′ 6≡ 1 (mod p), and therefore r ′− r 6≡ 0
(mod q). But then r ′− r has an inverse u modulo q . Taking the u-th power of the
above equivalence we then get

g (x−x′)u ≡ h(r ′−r)u ≡ h (mod p),

and so ξ= (x −x ′)u solves g ξ ≡ h.

The discrete log hash function. The discrete log hash is far too inefficient for prac-
tical use, yet it is illustrates some basic properties of general hash functions nicely.

Again, it relies on the safe prime p = 2q +1 and the two generators g and h of
Qp .

The hash function H maps Zq2 onto Qp . Since Zq2 has q2 members and Qp

only q , this means a halving in the number of bits.

The hash of a message m ∈Zq2 is

H(m) = g x hy mod p, m = x +q y, x, y ∈Zq .

Recall that by our conventions, 0 ≤ m < q2, and x and y are chosen with 0 ≤ x < q ,
0 ≤ y < q .

We notice the immediate relationship with Pedersen commitment: The com-
mitment c for a given message x and random nonce r is H(x +qr).

The proof given above that breaking Pedersen commitment implies the ability
to solve g ξ = h also proves that if we have H(m) = H(m′) for different m,m′ ∈Zq2

then we can once more solve g ξ = h.

Application: Coin tossing by telephone

The protocol to be described allows two parties to declare a winner among them so
that each has a 50% chance of winning if the protocol is followed properly. Further-
more, neither party can increase their chance of winning above 50% by departing
from the protocol, though they can decrease it. The protocol is as follows.

Version 2011-10-04

29 Number theory

Alice Bob
Picks primes p and q
(preferably ≡ 3 (mod 4))
and sends n = pq to Bob.

Checks that n is not a prime.
Picks random x ∈Z∗

n and sends
y = x2 mod n to Alice.

Computes a square root c of y
modulo n and sends it to Bob.

If c ≡±x (mod n), admit defeat.
Otherwise, declare victory.

Use c2 ≡ x2 (mod n) to find a nontrivial
factor of n and send it to Alice as evidence.

In this protocol, y has four square roots modulo n. For, thanks to the Chinese re-
mainder theorem, c2 ≡ y (mod n) is equivalent to the two equations

c2 ≡ y (mod p), c2 ≡ y (mod q).

Each of those has two solutions if considered modulo p and q , respectively, say

a2 ≡ y (mod p), b2 ≡ y (mod q).

Moreover, Alice can solve these two equations for a and b, and so the four so-
lutions to c2 ≡ y (mod n) are found by taking the unique solution c ∈ Zn of the
simultaneous congruences

c ≡±a (mod p), c ≡±b (mod q)

for all four combinations of the two signs.
Two of the four solutions will be congruent modulo n to ±x, and Alice cannot

know which. So she has a 50% chance of picking one of those to send to Bob. If she
does, she has revealed no information that Bob did not already possess, so he is
no closer to factoring n than he did originally.

On the other hand, if Alice picks one of the other two square roots, Bob now
knows two numbers c and x with c2 ≡ x2 (mod n), but c 6≡ ±x (mod n). Thus (see
Lemma 16) Bob can factor n and thus wins the coin toss.

The above analysis shows that the protocol works if both parties follow it faith-
fully. To be useful, however, we must also show that neither party can increase their
chance of winning by not following the protocol, but rather will either be exposed
or decrease their chances.

For example, Alice could just pick a prime n and send it to Bob. She will be
found out, of course, since Bob is supposed to check that n is not a prime. If he
skipped the check, but otherwise followed the protocol, there would now only be

Version 2011-10-04

Number theory 30

two square roots of y modulo n, namely, ±x. Thus Alice would send one of ±x to
Bob, and she would certainly win.

Another possibility for Alice might be to pick n a product of more than two
prime factors. But then y will have even more square roots modulo n, so she has
less than an even chance of picking one of ±x to send to Bob, and so she actually
diminishes her chance of winning.

Finally, Alice could return some number c that is not a square root of y modulo
n. We did not include a check for that, but Bob will surely find out, as his attempt
to use c and x will fail to produce a nontrivial factor of n.

It appears that Bob’s only possible deviation from the protocol is to send a
quadratic non-residue y to Alice. But again, Alice will discover this as her attempt
at finding a square root will fail.

Finally, it might be noted that the protocol seems quite inefficient, since Alice needs to
find new primes for each round played. (She cannot reuse the primes, even after a round
won, since Bob might have falsely admitted defeat, perhaps in the hopes of being able to
use the information in a future coin toss where the stakes might be higher.) Finding primes
requires quite a bit of computation, hence this protocol seems wasteful. Much better, then,
for Alice to commit to a bit, then for Bob to bet on either a zero or a one, and for Alice to
reveal her commitment. Bob wins if he guessed right, otherwise Alice wins.

Version 2011-10-04

	Congruences, or modular arithmetic
	Divisibility, divisors, factors
	Primes and unique factorization
	Euclid's algorithm
	Modular exponentiation
	The Chinese Remainder Theorem
	Fermat's Little Theorem and Euler's phi function
	Application to the RSA cryptosystem
	Primality testing
	Quadratic residues
	Factoring
	The discrete logarithm problem
	Applications: Commitment and discrete log hash
	Application: Coin tossing by telephone

