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Errata
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the top (resp., the bottom) of a page.

Introduction

Page 10. In equation (0.34), it should read:

P2n+1

Page 15. In line 3+, it should read:

P2n+1

Chapter 1

Page 28. In line 8+, the second term should read:(
utn+(L− z)P2n+1

)∣∣
ker(L−z) = 0,

Page 32. In equation (1.46) and in line 4−, it should read:

P2n+1

Page 32. In equation (1.52), it should read:

Fn(z, x′)

Page 32. In lines 3− and 2−, it should read: Equation (1.48) follows by com-
bining (1.41) and (1.44).
Page 35. In line 9+, it should read:

λ̂
β,`

= {λ̂β0 , λ̂
β
1 , . . . , λ̂

β
`−1, λ̂

β
`+1, . . . ,λ̂

β
n}, ` = 2, . . . , n− 1,
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Page 39. Equation (1.79) should have only one factor of i on the right-hand
side, so the i to the right of

∑n
j=1 should be stricken, that is, equation (1.79)

should read

Fn,x(z) = 2i

n∑
j=1

y(µ̂j)

n∏
k=1
k 6=j

(z − µk)(µj − µk)−1,

Page 40. Equation (1.80) should have +Fn,x(z) on the right-hand side, that is,
it should read

∂βK
β
n+1(z) = Fn,x(z) + 2βFn(z)

Similarly, the first line of (1.81) should have +Fn,x
(
λβ`
)

on the right-hand side.
Page 41. In line 2+, it should read:

. . . with (1.5), (1.11), and (1.16) taken into account.
Page 41. In line 9+, it should read:

. . . Relations (1.85) and (1.86). . .
Page 41. In line 10+, it should read:

. . . for K
β

n+1 with (1.16) and (1.56) taken into account.
Page 41. In Lemma 1.18 it suffices to assume u ∈ C∞(R). The additional
assumption u ∈ L∞(R) is superfluous since for each fixed x ∈ R, |µj(x)| is finite
and hence µ̂

j
(x) cannot coincide with the branch point P∞ (a fact used in the

last part of the proof on p. 42). Analogously, it suffices to assume that u satisfies
Hypothesis 1.33 in the time-dependent setting.
Page 42. In line 12+, it should read:

lim
x→x0

µ̂jp(x) = (µ0,−(i/2)Fn,x(µ0, x0)), p = 1, . . . , N ;

Page 44. Line 5− should read:
One infers from (1.98) that

Page 44. Equation (1.100) should read:∫ P

Q0

ω
(2)
P∞,0

=
ζ→0
−ζ−1+e0,0 +O(ζ) as P → P∞

for some e0,0 ∈ C.
Page 44. In lines 1−, 2−, and 3−, strike the sentences

since by (1.98),. . . sheets Π±. Thus, . . . contains no constant term.
Page 45. In equation (1.105), it should read:

· · · exp

(
− i(x− x0)

(∫ P

Q0

ω
(2)
P∞,0
−e0,0

))
Page 52. In equation (1.128) and in the line following it, replace Zn \ {0} by
(Zn \ {0})τ
Page 52. In the second line following equation (1.128), replace iΩU

(2)
0,j = mj by

iΩU
(2)
0,j = m1τ1,j +

∑n
k=2(mk −mk−1)τk,j

Page 52. In the fifth line following equation (1.128), it should read:
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. . . interval of length Ω, x ∈ [x0, x0 + Ω], for some x0 ∈ R.
Pages 57–63. There is a systematic error in Examples 1.30–1.32: All formulas
for yj should be replaced by iyj , j = 1, 2. In Example 1.30, the quantities

Fk(z, y) should therefore be of the form Fk(z, y) = y2−R2k+1(z) for k = 1, 2, 3,
and k = n, for monic polynomials R2k+1 of the form z3, z5, z7, and z2n+1. In
Example 1.31, Fk(z, y) should be of the form

Fn(z, y) = y2−z
n∏
j=1

(z + κ2j )
2 = 0

and in Example 1.32 it should read

F1(z, y) = y2−
(
z3 − g2

4
z +

g3
4

)
= 0

and

F2(z, y) = y2−
(
z5 − 21

4
g2z

3 − 27

4
g3z

2 +
27

4
g22z +

81

4
g2g3

)
= y2−(z2 − 3g2)

(
z3 − 9

4
g2z −

27

4
g3

)
= 0

Pages 61. In Example 1.31 assume cj , κj ∈ C \ {0}, j = 1, . . . , n.

Pages 61. In Example 1.31 replace s-K̂dVn(un) = 0 by

s-KdVn(un) = 0

for an appropriate set of integration constants {c`}`=1,...,n ⊂ C (cf. (1.15)).

Pages 66. Add the following to the end of the sentence following (1.164):
. . . except at collisions of certain µj (respectively, ν`), where one can only

assert continuity of µj (respectively, ν`) with respect to (x, tr).

Page 76. Equation (1.207) should read:∫ P

Q0

Ω̃
(2)
P∞,2r

=
ζ→0
−

r∑
q=0

c̃r−qζ
−2q−1+ẽr,0 +O(ζ) as P → P∞

for some ẽr,0 ∈ C.
Page 77. In equation (1.211), it should read:

· · · exp

(
− i(x− x0)

(∫ P

Q0

ω
(2)
P∞,0
−e0,0

)
− i(tr − t0,r)

(∫ P

Q0

Ω̃
(2)
P∞,2r

−ẽr,0
))

Page 79. In line 9−, replace −Ũ
(2)

2r by iŨ
(2)

2r

Page 81. In lines 9− and 10−, it should read:

· · · exp

(
− i(x− x0)

(∫ P

Q0

ω
(2)
P∞,0
−e0,0

)
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− i(tr − t0,r)
(∫ P

Q0

Ω̃
(2)
P∞,2r

−ẽr,0
)
−
∫ P

Q0

ω
(3)

λ̂β0 (x0,t0,r),λ̂
β
0 (x,tr)

)
Page 81. In line 4− replace . . . purely imaginary . . . by . . . real . . .
Pages 86. In Example 1.52 assume cj , κj ∈ C \ {0}, j = 1, . . . , n.
Pages 86. Line 1− should read:

s-KdVn(un) = 0, KdVr(un) = 0

for appropriate sets of integration constants {c`}`=1,...,n ⊂ C (cf. (1.15)) and

{c̃s}s=1,...,r ⊂ C.
Page 101. Line 2+ should start with: genus n. . . .
Page 102. In the last line of equation (1.282) and in equation (1.283), the
remainder term can be replaced by:

O(|z|−n−(3/2))

Page 102. In line 2 of equation (1.282), it should read:( 2n∏
m=0

(1− (Em/z))

)−1/2
Page 102. In the last line of equation (1.284), the remainder term can be
replaced by:

O(|z|−n−(5/2))
Page 102. Line 4− should read:

δf̂`

δu
=

2`− 1

2
f̂`−1, ` = 1, . . . , n.

Page 103. The last line of equation (1.287) should read:

= utn − ∂x(∇Hn)u,

Page 103. In line 2 of Theorem 1.62, it should read:

. . . ` = 1, . . . , n for n ∈ N . . .

Page 117. In line 11+ replace τZn by Znτ
Page 141. Equation (2.106) should read:∫ P

Q0

ω
(2)
P∞,0

=
ζ→0
−ζ−1+e0,0 +O(ζ) as P → P∞

for some e0,0 ∈ C.
Page 142. In equation (2.111), it should read:

· · · exp

(
− i(x− x0)

(∫ P

Q0

ω
(2)
P∞,0
−e0,0

))
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Page 142. In equation (2.112), it should read:

· · · exp

(
−
∫ P

Q0

ω
(3)
P∞,P0

+ 1
2 ln(Em0

)− i(x− x0)

(∫ P

Q0

ω
(2)
P∞,0
−e0,0

))
Pages 151. Add the following to the end of the sentence following (2.159):

. . . except at collisions of certain µj (respectively, νk), where one can only

assert continuity of µj (respectively, νk) with respect to (x, tr).

Page 159. Equation (2.197) should read:∫ P

Q0

Ω̃
(2)
P∞,r

=
ζ→0

{
−
∑r−1
q=0 c̃r−1−qζ

−2q−1+ẽr,0 +O(ζ), r ∈ N,
0, r = 0,

as P → P∞

for some ẽr,0 ∈ C.
Page 159. Equation (2.201) should read:

α̃

α
Q1/2

∫ P

Q0

ω
(2)
P0,0

=
ζ→0
− α̃
α
Q1/2ζ−1+d0 +O(ζ) as P → P0

for some d0 ∈ C.
Page 159. In lines 8−, 9−, 10− and 11−, strike the sentence

Since by (2.200), . . . no constant term.
Page 160. In equation (2.204), it should read:

· · · exp

(
− i(x− x0)

(∫ P

Q0

ω
(2)
P∞,0
−e0,0

)
+ (tr − t0,r)

(
α̃

α
Q1/2

∫ P

Q0

ω
(2)
P0,0
−d0 +

∫ P

Q0

Ω̃
(2)
P∞,r
−ẽr,0

))
Page 160. In equation (2.205), it should read:

· · · exp

(
−
∫ P

Q0

ω
(3)
P∞,P0

+ (1/2) ln(Em0
)− i(x− x0)

(∫ P

Q0

ω
(2)
P∞,0
−e0,0

)
+ (tr − t0,r)

(
α̃

α
Q1/2

∫ P

Q0

ω
(2)
P0,0
−d0 +

∫ P

Q0

Ω̃
(2)
P∞,r
−ẽr,0

))

Chapter 2

Page 168. The second paragraph should read as follows:
If, in addition, ` = 0 and one is interested in spatially periodic solutions u

with a real period Ω > 0, the additional periodicity constraints

iΩU
(2)
0 ∈ (Zn \ {0})τ

must be imposed. (By (B.45) this is equivalent to 2iΩc(n) ∈ (Zn \ {0})τ .)
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Chapter 3

Page 180. Line 1−, should read:

Qn+1 =

n+1∑
`=0

cn+1−`Q̂`, Q̂0 = i

(
−1 0
0 1

)
.

Page 181. In line 15+, replace KdV by AKNS.
Page 189. In line 4+, it should read h̆n−` = Ahn−`.
Page 199. Delete r at the end of equation (3.108).
Page 204. In line 4−, it should read:

with non-self-adjoint Dirac-type operators . . .
Page 212. In equation (3.146), it should read:

p(x, · ), q(x, · ) ∈ C1(R)

Page 214. In line 8−, it should read:
. . . properties of Fn, Gn+1, Hn, . . .

Pages 214. Add the following to the end of the sentence following (3.169):
. . . except at collisions of certain µj (respectively, νk), where one can only

assert continuity of µj (respectively, νk) with respect to (x, tr).

Page 222. In line 9−, replace F̂r by F̃ r twice.

Chapter 5

Page 302. In line 3+, replace P∞ by P∞
+

.

Page 310. In line 7−, it should read:
. . . properties of Fn, Gn, Hn, . . .

Pages 310. Add the following to the end of the sentence following (5.132):
. . . except at collisions of certain µj (respectively, νk), where one can only

assert continuity of µj (respectively, νk) with respect to (x, tr).

Appendix A

Page 329. In line 9−, it should read: . . . The intersection of . . .
Page 330. Line 10− should read:

P(z, y, 1) = 0

Page 331. In line 6+, it should read:
. . . the ramification points). If . . .

Page 337. In line 4+, it should read: . . . is a smooth simple, . . .
Page 347. In lines 7− and 6−, it should read:

. . . where {P∞1 , . . . , P∞N
} (typically, N ∈ {1, 2} in the main text), denotes

the set of . . .
Page 347. In line 2−, P0 should be replaced by Q0.
Page 354. In line 7−, it should read:

The case R 6= 0, and . . .
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Appendix B

Page 363. In (B.39) replace
∫ E2k

E2k−1

zj−1dz
R2n+1(z)1/2

by
∑n
`=k

∫ E2`

E2`−1

xj−1dx
R2n+1(x)1/2

and refer to the homology basis described on top of p. 360, recalling the ordering
E0 < E1 < · · · < E2n.
Page 363. Equation (B.40) should read

ω
(3)
P1,P∞

=
y + y1
z − z1

dz

2y
+
λn
y

n−1∏
j=1

(z − λj) dz, (B.40)

Appendix C

Page 375. In (C.39) replace
∫ E2k−1

E2k−2

zj−1dz
R2n+2(z)1/2

by
∫ E2k

E2k−1

xj−1dx
R2n+2(x)1/2

Page 375. In (C.40) replace
∫ E2k

E2k−1

zj−1dz
R2n+2(z)1/2

by −
∑k
`=1

∫ E2`−1

E2`−2

xj−1dx
R2n+2(x+i0)1/2

and refer to the homology basis indicated in Fig. C.2 on p. 37, changing all Em
into real position with the ordering E0 < E1 < · · · < E2n+1.

Appendix D

Page 383. In line 2+ it should read:

. . . coefficients of ηk yields
Page 385. In line 8−, it should read:

. . . c`, ` = 0, . . . , n+1,

Appendix E

Page 397. In the first displayed equation in the proof of Theorem E.1 and in
equation (E.5), replace the subscript “j” by “k” twice. Thus, the first equation
should read:

1

2πi

∮
CR

dζ
ζm−1

Fn(ζ)(ζ − z)
=
zm−1

Fn(z)
+

n∑
k=1

µm−1k

Fn,z(µk)(µk − z)
,

z 6= µ1, . . . , µn, m = 1, . . . , n+ 1,

and equation (E.5) should read:

zm−1 −
n∑
k=1

µm−1k Fn(z)

Fn,z(µk)(z − µk)
= Fn(z)δm,n+1. (E.5)

Page 399. In line 2−, replace (E.14) by (E.13)

Appendix F

Page 404. In equation (F.18), it should read:

n∑
`=0

dn,`(E)Φ
(j)
` (µ)

7



Appendix J

Page 463. The first and third line in (J.36) for Mα,1,1(z, x0) and Mα,2,2(z, x0)
should be interchanged, moreover it is possible to considerably simplify the
formula for Mα,2,2(z, x0) (the old Mα,1,1(z, x0)) as follows:

Mα,1,1(z, x0) = i
Kβ
n+1(z,x0)

2(1+β2)R2n+1(z)1/2
,

Mα,2,2(z, x0) = i
Fn(z,x0)−βFn,x(z,x0)+β

2Hn+1(z,x0)

2(1+β2)R2n+1(z)1/2
. (J.36)

(The formula for Mα,1,2(z, x0) = Mα,2,1(z, x0) in (J.36) is correct as it stands.)

List of Symbols

Page 468. In line 3+, it should read

∂K̂g = a1b1a
−1
1 b−11 . . . agbga

−1
g b−1g
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Page 68. Lemma 1.35 is equivalent to:

−Vn+1,tr +
[
Ṽr+1, Vn+1

]
= 0.

Page 104. The following considerations are relevant in connection with KdV
conservation laws: Assuming that u = u(x, tn) satisfies u( · , tn) ∈ SR(R), tn ∈ R
(for simplicity), we recall that the one-dimensional Schrödinger equation

L(tn)ψ(z, · , tn) = zψ(z, · , tn), z ∈ C \ R, tn ∈ R

has unique (up to constant multiples) Weyl–Titchmarsh solutions ψ±(z, · , tn)
satisfying for all R ∈ R,

ψ±(z, · , tn) ∈ L2([R,±∞)), z ∈ C \ R, tn ∈ R.

The corresponding Weyl–Titchmarsh functions m±(z, x, tn) are then defined by

m±(z, x, tn) = ∂x ln(ψ±(z, x, tn)).

One obtains an asymptotic spectral parameter expansion of m±( · , x, tn) as
z → i∞ of the type (cf. (J.29), (J.30))

m±(z, x, tn) =
z→i∞

∞∑
j=−1

m±,j(x, tn)z−j/2, (1)

and the Riccati equation (J.26) for m±(z, x, tn) then implies the following re-
cursion relations for the expansion coefficients m±,j ,

m±,−1 = ±i, m±,0 = 0, m±,1 = ∓ i
2
u, m±,2 =

1

4
ux,

m±,j+1 = ± i
2

(
m±,j,x +

j−1∑
`=1

m±,`m±,j−`

)
, j = 2, 3, . . .

(2)

Moreover, we recall

m−,j = (−1)jm+,j , j ∈ {−1} ∪ N0. (3)

Theorem 1 Suppose that u ∈ SR(R) satisfies the nth KdV equation (1.287 )
(for some set of integration constants c`, ` = 1, . . . , n, n ∈ N). Then, the
infinite sequence of KdV conservation laws takes on the form

∂tnm±,2`+1 = ∂x

( n∑
k=0

cn−k

k∑
p=0

f̂k−pm±,2`+1+2p

)
, ` ∈ N0. (4)

Here f̂` are the homogeneous coefficients (1.6 ). Similarly to the recursion rela-

tion (2) for the coefficients m±,j, the coefficients f̂` can be computed recursively
from (1.4 ) (putting all integration constants equal to zero) or directly from the
nonlinear recursion relation (D.8 ).
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Proof The key to the derivation of (4) is the innocent looking identity

∂tn(∂x ln(ψ±(z, x, tn, )) = ∂x(∂tn ln(ψ±(z, x, tn))),

or equivalently,
m±,tn = ((ln(ψ±))tn)x.

Assuming that ψ±(z, x, tn) are chosen so that

ψ±,tn = P2n+1ψ±,tn = Fnψ±,x − (1/2)Fn,xψ± (5)

(cf. (1.18)) one obtains

m±,tn = ∂x(Fnm± − (1/2)Fn,x).

(That ψ± can be chosen to satisfy (5) has been discussed in [2].) Since by

(1.11), Fn =
∑n
k=0 cn−k

∑k
p=0 f̂k−pz

p, it suffices to consider the homogeneous

case F̂n =
∑n
k=0 f̂n−kz

k. One then obtains

m±,tn =

∞∑
j=1

m±,j,tnz
−j/2

= ∂x(Fnm± − (1/2)Fn,x)

= ∂x

(
F̂n

∞∑
j=−1

m±,jz
−j/2 − (1/2)F̂n,x

)

= ∂x

( n∑
k=0

f̂n−kz
k
∞∑

j=−1
m±,jz

−j/2 − (1/2)F̂n,x

)
.

A comparison of powers of z−j/2 then yields

m±,j,tn = ∂x

( n∑
k=0

f̂n−km±,j+2k

)
, j ∈ N.

Since every even order coefficient m±,2` is known to be a total derivative (i.e.,
m±,2` = ∂x(. . . )), the conservation laws associated with m±,2`, ` ∈ N, are all
trivial. The odd order coefficients m±,2`+1 lead to a nontrivial infinite sequence
of conservation laws. (Of course, by (5), m+,2`+1 and m−,2`+1, ` ∈ N0, yield
the same infinite sequence of KdV conservation laws.)

The basic KdV functionals Î` = Î`(u, ux, uxx, . . . , ∂kxu), are then given in

terms of m̂+,2`+1 and f̂`+1 by

Î` = i

∫
R
dx m̂+,2`+1(x) =

1

2`+ 1

∫
R
dx f̂`+1(x), ` ∈ N0 (6)

(cf. (1.268) and (1.285)). Equation (4) yields a direct proof of

dÎ`
dtn

= 0, ` ∈ N0, n ∈ N
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(cf. Theorem 1.62).
Real-valuedness of u is not essential for these considerations and can be

dropped. Moreover, the decay assumptions on u as |x| → ∞ can be considerably
relaxed and replaced by the finiteness of certain moments of u.

This representation of the KdV conservation laws is perhaps simpler for
computational purposes than the traditional one relying on the Lenard recursion
operator. For a new twist to conserved KdV polynomials we refer to [4] (see
also [1]).

Next, we supplement this particular addendum on KdV conservation laws
by briefly sketching the extension of the Hamiltonian formalism to Bohr almost
periodic KdV solutions in the space variable as discussed by Johnson and Moser
[3]:

We start by noting that if f denotes a Bohr (uniformly) almost periodic
function on R, its ergodic mean 〈f〉 is given by

〈f〉 = lim
R↑∞

1

2R

∫ R

−R
dx f(x).

Suppose that u has the frequency moduleM(u). Then given a density F as on
p. 97, one has

F(u) = lim
R↑∞

∫ R

−R
dxF

(
u, ux, uxx, . . . , ∂

m
x u
)

= 〈F (u)〉,

and assuming that the frequency module M(v) of v satisfies M(v) ⊆ M(u),
one obtains

(dF)u(v) =
d

dε
F(u+ εv)

∣∣
ε=0

= lim
R↑∞

∫ R

−R
dx

( m∑
k=0

(−∂x)k∂u(k)Fv

)
(x)

=
〈
(∇F)uv

〉
=

〈
δF

δu
v

〉
.

In analogy to p. 98, the Poisson brackets of two functionals F1,F2 are then
given by

{F1,F2} =

〈
δF1

δu

(
∂x
δF2

δu

)〉
.

Again one verifies that both the Jacobi identity as well as the Leibniz rule hold
in this case. Moreover, if F is a smooth functional and u develops according to
a Hamiltonian flow with Hamiltonian H, that is,

ut = (∇sH)u = ∂x(∇H)u = ∂x
δH

δu
,

then
dF
dt

=
d

dt
〈F (u)〉 = {F ,H}.
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Next, one introduces the fundamental function w by

w(z) = −1

2

〈
1

g(z, · )

〉
for |z| sufficiently large. Since

w′(z) = 〈g(z, · )〉, z ∈ C \ spec(H)

(cf. (1.266)), w extends analytically to z ∈ C \ spec(H). One infers from g =
1/(m− −m+) that

w(z) = ±〈m±(z, · )〉, z ∈ C \ spec(H).

Here m± denote the half-line Weyl–Titchmarsh functions associated with H.
The asymptotic expansion of m± as |z| → ∞ has been recorded in (1), and

its connection with the homogeneous coefficients f̂` and hence with the KdV
functionals Î` has been noted in (6). In particular, introducing

Î` = i〈m̂+,2`+1〉 =
1

2`+ 1
〈f̂`+1〉, I` =

∑̀
k=0

c`−k Îk, ` ∈ N0,

the KdV equations again take on the form

KdVn(u) = utn − 4∂x(∇In+1)u = 0, n ∈ N0.

Finally, one can show that w(z1) and w(z2) are in involution for arbitrary
z1, z2 ∈ C \ spec(H), and hence obtains

{w(z1), w(z2)} = 0, z1, z2 ∈ C \ spec(H), (7)

{w(z), Ip} = 0, {Ip, Ir} = 0, z ∈ C \ spec(H), p, r ∈ N0. (8)

Naturally, these considerations apply to the special periodic case in which
〈f〉 for a periodic function f on R is to be interpreted as the periodic mean
value.

Page 122. An extension of formula (1.299) already appeared on p. 428 in [3].

Page 145. Line 4− can be more effectively replaced by:
By equation (2.94) one concludes that

Page 182. Line 7+: It would have been more natural to write equation (3.18)
as:

Gn+1(z) =

n+1∑
`=0

gn+1−`z
` =

n+1∑
`=0

cn+1−`Ĝ`(z),

Page 198. We note that Ω
(2)
0 in equation (3.96) has the explicit form

12



Ω
(2)
0 = ω

(2)
P∞+

,0 − ω
(2)
P∞− ,0

=
zn

y

1∑
k=0

c1−k(E)zkdz +
λ̃n
y

n−1∏
j=1

(z − λ̃j)dz,

where ck(E), k ∈ N0, are defined in (D.5) and λ̃j , j = 1, . . . , n, are uniquely
determined by the normalization∫

aj

Ω
(2)
0 = 0, j = 1, . . . , n.

This comment also applies to Ω
(2)
∞,0 in (4.215).

Pages 200 and 224. One uses the equality

z(P∞− , ν̂) = z(P∞+ , µ̂)

(an elementary consequence of (3.58)) to compute the constant C in equations
(3.113) and (3.224).

Page 220. We note that ω
(2)
P∞+

,q − ω
(2)
P∞− ,q

in equation (3.207) has the explicit

form

ω
(2)
P∞+

,q − ω
(2)
P∞− ,q

=
zn

y

q+1∑
k=0

cq+1−k(E)zkdz +
λ̃n
y

n−1∏
j=1

(z − λ̃j)dz, q ∈ N0,

where ck(E), k ∈ N0, are defined in (D.5) and λ̃j , j = 1, . . . , n, are uniquely
determined by the normalization∫

aj

(
ω
(2)
P∞+

,q − ω
(2)
P∞− ,q

)
= 0, j = 1, . . . , n.

This comment is also relevant in connection with (C.37).
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