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1 Introduction

The study of almost split sequences, and their arrangement in the Auslander-
Reiten quiver, has proven a powerful tool for understanding the structure of
the module category of a finite dimensional algebra (see, for instance, the
book of Auslander, Reiten and Smalø [2] or the Lecture Notes of Ringel
[11]).

The module categories of representation-finite artinian rings also have
almost split sequences (as shown by Zimmermann [14]; a proof along common
lines will be given in 3.20). It is therefore a natural question to ask to which
extent presently known results for finite dimensional algebra over fields can
be generalized to other artinian rings.

In the introductory Sections 2 and 3 we recall some basic definitions,
and the formal concept of strict τ -categories (= categories with almost split
sequences) due to Iyama [9, 10].

Then, Auslander-Reiten quivers of representation-directed artinian rings
will be studied in Sections 4 to 9. Representation-directed artinian rings
are artinian rings A with the property that there is no cycle of nontrivial
morphisms between indecomposable modules.

When trying to write down something similar to the Auslander-Reiten
formula, and even before that point, one faces the problem that there is no
field present, which could be used for dualizing. The only available alter-
native consists in using instead the endomorphism rings of indecomposable
modules m and n, which are at least skewfields. However, this results in two
different duals of HomA(m,n), which will be denoted by HomA(m,n)L and
HomA(m,n)R. They are defined as HomEnd(m)(HomA(m,n),End(m)) and
HomEnd(n)(HomA(m,n),End(n)), respectively. Adopting standard notation,
let τm, τ−n be the left/right terms in the almost split sequences with m, n
as right/left terms. Then the Auslander-Reiten formula for representation-
directed artinian rings, which will be proven in 4.5, reads

HomA(n, τm)R ∼= Ext1
A(m,n) ∼= HomA(τ−n,m)L.

With the help of this formula, one can read off directly from the Auslander-
Reiten quivers not only information about homomorphisms, but also about
extensions. This way, it will be shown in 4.8 that sincere representation-
directed artinian rings have global dimension at most two.

For later use, species are defined in Section 5 as finite sets of skewfields
with associated bimodules. A species is simply connected if its underlying
graph is a tree. Similarly, one can define a simply connected artinian ring
to be an artinian ring where a certain underlying graph is a tree. In 5.3, 5.5
it is shown that simply connected species and simply connected hereditary
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artinian rings have the same representation theory. In 5.12 it is shown that
indecomposable representations of a simply connected representation-finite
species are uniquely determined by their dimension vectors.

Dowbor, Ringel and Simson [5] introduced dimension sequences in order
to describe Auslander-Reiten quivers of hereditary artinian rings having ex-
actly two projective indecomposables. This concept is discussed in Section 6.
In particular, it is shown in 6.7 that a certain 2×2 matrix ring is representa-
tion finite if a vector giving the dimensions of certain vector spaces is in fact a
dimension sequence. It was shown by Schofield [13] that there are such rings
which have Auslander-Reiten quivers that do not occur in the representation
theory of artinian algebras.

In Section 7, combinatorial aspects of simply connected representation-
finite artinian rings are discussed. It turns out that the translation quivers to
be considered — the existence of certain skewfields and bimodules taken for
granted — are indeed Auslander-Reiten quivers of artinian rings. It is shown
that shifting dimension sequences has only little influence on the representa-
tion theory of the associated artinian rings, a fact which allows to reduce the
complexity of combinatorial experiments. Further, it will be shown in 7.7
that the indecomposable modules over a simply connected representation-
finite artinian ring are uniquely determined by their dimension vectors, by
giving a combinatorial argument which reduces the proof to the statement
from 5.12.

Following Ringel, we call a module over an artinian ring A a brick if its
endomorphism ring is a skewfield, and two bricks are called orthogonal if
there are no homomorphisms between them. Then one can construct, for
any finite set of pairwise orthogonal bricks, an abelian subcategory of the
module category A -mod where these bricks are the simple objects. It is
shown in 8.4 that, under certain conditions on the vanishing of Ext1, the
subcategory determined by two orthogonal bricks is the module category of
a hereditary artinian ring. This will be used to prove 8.10, the highlight of
Section 8: A species is representation-finite if and only if its corresponding
quiver, with an edge labeled by the length of the dimension sequence of the
bimodule belonging to the edge, is a Coxeter diagram. This theorem was
stated by Dowbor, Ringel and Simson in [5], where it is remarked that the
proof is rather technical, and details are left out.

In Section 9, the Auslander-Reiten quivers of representation finite hered-
itary artinian rings are studied in detail. As we have just seen, they corre-
spond to the Coxeter diagrams. In 9.10, a canonical bijection between the
positive roots associated with a Coxeter diagram and the isomorphism classes
of indecomposable modules of the corresponding hereditary artinian ring is
constructed.
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Bongartz and Gabriel [3] introduced the concept of coverings for module
categories of finite dimensional algebras over fields. In Sections 10 to 14, we
will be concerned with coverings of module categories of representation-finite
artinian rings. Section 10 contains elementary properties of coverings of strict
τ -categories. In Section 11, we define the fundamental group G of a strict τ -
category C in a similar way the fundamental group is defined in topology, and
construct, for every subgroup of G, a covering of C. Especially, we will find
a universal covering (11.6). It will turn out that all coverings having certain
sensible properties arise from our construction (11.4). Coverings of module
categories of representation finite artinian rings will be studied in section 13.
It will be shown that the universal covering of such a module category is the
module category of a locally representation finite ring (13.4). Concluding,
one could say that, in some sense, the module categories locally all look like
the ones of simply-connected artinian rings. Therefore, coverings provide a
method of transferring theorems for simply connected representation-finite
artinian rings to the more general situation of arbitrary representation-finite
artinian rings. This method will be applied to the Auslander-Reiten formula,
proving that it holds for arbitrary representation-finite artinian rings which
have a graded module category (14.2). It will also follow that dimension
sequences still determine certain relations between pairs of indecomposable
modules (14.1).

In Section 15, a concept for gluing and ungluing of modules is devel-
oped. Ungluing provides a way of comparing module categories of some
representation-finite artinian rings to module categories of simply connected
ones, which is in some aspects simpler than applying the theory of coverings.
The disadvantage is that this method can only be applied if the original mod-
ule category has a suitable shape. Gluing provides a method of “building”
large representation-finite simply connected artinian rings.

Finally, Appendix B contains the source code of a C++ program, which
was written to produce, according to the description in 7.1, output like the
Auslander-Reiten quivers given in Appendix C.

I wish to thank W. Rump for giving me this exciting subject, which he
motivated in many great lectures and seminars, for his support, and for our
interesting discussions. Also I would like to thank M. Hertweck for his helpful
advice and for examining this thesis.



6 2 DEFINITIONS

2 Representation-finite artinian rings — Def-

initions

In this section a few standard definitions on rings and modules are given.
Also the notation for the necessary subcategories of module categories is in-
troduced.

For a ring R let R -Mod, R -mod, R -Proj, R -proj, R -Inj and R -inj be
the categories of left R-modules, finitely presented left R-modules, projective,
finitely generated projective, injective, and finitely presented injective left R-
modules, respectively. Let Mod-R be the category of right R-modules with
the obvious variations.

Most of the time we will only be interested in left modules and just call
them modules. We will always write homomorphisms of modules (and mor-
phisms in categories that can and will be specialized to module categories)
on the right and compose them accordingly.

2.1 Definition. A ring A is called artinian if it satisfies the descending chain
condition on left and on right ideals, i.e. if every chain A ⊇ I0 ⊇ I1 ⊇ · · · of
left or right ideals gets stationary.

If A is an artinian ring, then A is also noetherian, hence then the finitely
generated and the finitely presented A-modules coincide, and they have finite
length (see [1]).

2.2 Definition. A module M 6= 0 is called indecomposable, if it does not
admit a nontrivial decomposition into a direct sum, i.e. M = M1 ⊕M2 ⇒
M1 = 0 ∨M2 = 0.

R -Ind denotes the category of indecomposable R-modules.
A module M is called simple, if it has exactly two submodules (in that

case these two submodules are M and {0}).

For an artinian ring A the finitely generated indecomposable A-modules
have local endomorphism rings (Fitting’s Lemma, [1]). Therefore any finitely
generated A-module has a unique (up to isomorphism and permutation) de-
composition into indecomposable modules. Also any finitely generated A-
module has a projective cover.

2.3 Definition. An artinian ring A is called representation-finite if there
is only a finite number of isomorphism classes of indecomposable finitely
generated A-modules.
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2.4 Definition. An artinian ring A is called artinian algebra if A is finitely
generated as a module over its center.

For example any finite dimensional algebra over a field is an artinian
algebra.

For artinian algebras part of the results presented here can be found in
[2]. Most of them with different proofs which cannot be extended to the
case of arbitrary artinian rings since they use an explicit construction of τ
(= DTr in that case and in the notation of [2]) which does not work in the
more general case.

2.5 Definition. A artinian ring is called graded if, as additive abelian group,
A ∼= ⊕RadiA/Radi+1A and the multiplication in A is induced by the mul-

tiplications Radi A
Radi+1 A

× Radj A
Radj+1 A

- Radi+j A
Radi+j+1 A

.

2.6 Definition. An artinian ring A is called simply connected if the graph
with vertices the isomorphism classes of indecomposable projective modules,
and, for indecomposable projectives P and Q, an arrow [P ] - [Q] when-
ever there is a non-trivial homomorphism P - RadQ/Rad2Q, is a tree.
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3 Strict τ-categories

Iyama introduced the concept of strict τ -categories [9, 10]. In order to follow
his approach some basic properties of modules over preadditive categories
are discussed at the beginning of this section. Then one-sided almost split
sequences are introduced, and it is shown that they correspond to minimal
projective resolutions in the module category (3.13). Strict τ -categories will
be defined as categories, where every object has a right and a left almost
split sequence such that these sequences are almost split unless the object
is projective or injective, and it will be shown that the module categories of
representation finite artinian rings have this property.

3.1 Lemma (Yoneda). Let C be a preadditive category, F : C - Ab

an additive functor (Ab denotes the category of abelian groups), M ∈ Ob(C).
Then η : Nat(C(M,−), F) - F(M), α - (1M)αM is an isomorphism of
abelian groups.

Proof. η−1 : a - αa, αaN : ϕ - (a)(F(ϕ))

To avoid set-theoretical problems, we will assume any categories over
which we want to consider modules to be skeletally small, that means that
the isomorphism classes of objects form a set (compare [12] to see how this
restriction can be avoided).

3.2 Definition. Let C be a preadditive category. A C-module is a contravari-
ant functor M : C - Ab.

Let C -Mod be the category of all C modules with natural transformations
as morphisms, Mod- C = Cop -Mod.

3.3 Example. A ring R can be understood as a preadditive category R with
a single object. Then R -Mod = R -Mod (the “normal” R-modules).

3.4 Lemma. The module C(−, m) is projective in C -Mod for any m ∈ C.

Proof. Given α and π in the following diagram we have to find a natural
transformation β that makes the diagram commutative.

C(−, m)

M
π --

�

β

N

α
?

By Yoneda’s Lemma α = (a)(N(−)) for an a ∈ N(m). That is equivalent to
saying (ϕ)αn = (a)(N(ϕ)) ∈ N(n) for any n ∈ Ob C and any ϕ ∈ C(n,m).
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Choose b ∈ M(m) with (b)πm = a (that is possible since πm is epi). If
β = (b)(M(−)) then for any n ∈ Ob C and ϕ ∈ C(n,m) one has

(ϕ)βnπn = ((b)M(ϕ))πn = (b)πm(N(ϕ)) = (a)(N(ϕ)) = (ϕ)αn.

Therefore βπ = α.

3.5 Definition. The category of finitely generated C-modules is

C -Modfg = {M ∈ C -Mod | ∃ epi
⊕

finite

C(−, mi) -- M}

The category of finitely presented C-modules is

C -mod = {M ∈ C -Mod | ∃ projective resolution
⊕

finite

C(−, mi) -
⊕

finite

C(−, ni) -- M}

We shall define C -proj = C -Proj ∩ C -mod. (The full subcategory of pro-
jective objects in C will be denoted by Proj(C); hopefully this will cause no
confusion.)

Following [12], we call a category C strongly noetherian if C -mod is abelian
and noetherian, i.e. if C -mod has kernels and satisfies the ascending chain
condition on subobjects of any object.

Note that, if C is in fact an additive category, which means that C has a
zero-object and biproducts, then the finite direct sums in the above definition
can be omitted.

The following lemma shows that a category being strongly noetherian is
very similar to a noetherian ring.

3.6 Lemma. Let C be a preadditive category. Then the following are equiv-
alent:

(i) C is strongly noetherian.

(ii) Any submodule of any finite direct sum of modules of the form C(−, m)
is finitely generated.

(iii) Any submodule of any finitely generated C-module is finitely generated.

Proof. First assume C to be strongly noetherian, and U to be a submodule of
the direct sum of the modules C(−, mi) such that U is not finitely generated.
Then there is an infinite chain

K1 � K2 � · · · ≤ U ≤
⊕

C(−, mi)
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with Kj finitely generated for any j ∈ N. Now the quotients

(
⊕

i

C(−, mi))/Kj

are finitely presented and therefore, since C -mod is abelian, the kernels Ki

are finitely presented. This contradicts the ascending chain condition.
Next assume any submodule of any finite direct sum of modules of the

form C(−, m) is finitely generated and U ≤ M with M finitely generated.
Then we have the following pullback diagram.

K- -
⊕

C(−, mi)

PB

U

??
- - M

??

By assumption K is finitely generated and therefore U is finitely generated
as well.

For the last implication assume that all submodules of finitely generated
C-modules are finitely generated. Then clearly C -mod = C -Mod

fg
and this

category is abelian and noetherian.

3.7 Lemma. Let C be an additive category such that idempotents split in C.
Then the functor F : C - C -proj : m - C(−, m) is an equivalence.

Proof. Given ψ ∈ C(m,n), we can define F(ψ) : C(−, m) - C(−, n) by
(ϕ)(F(ψ)x) = ϕψ = (ψ)C(ϕ, n). So F(ψ) = (ψ)C(−, n). By Yoneda’s Lemma
every η : C(−, m) - C(−, n) is of the form η = (ψ)C(−, n) for exactly one
ψ ∈ C(m,n). Thus F is full and faithful.

Let P ∈ C -proj. Then C(−, m) -- P for some m ∈ C. Since P is pro-
jective this epimorphism splits. Since F is full, the corresponding idempotent
in End(C(−, m)) corresponds to an idempotent in EndC(m), which splits.

3.8 Example. Let R = {R} be as in Example 3.3. In R idempotents
need not split. But R -mod = (add R) -mod, where add R is the full
subcategory of R -mod of direct summands of direct sums of copies of R.
The category addR is additive and in add R idempotents split. Therefore
R -proj = R -proj = (add R) -proj = add R.

3.9 Definition. An additive category C is called a Krull-Schmidt category
if every object of C is isomorphic to a finite direct sum of objects with local
endomorphism rings.

From now on C is assumed to be a Krull-Schmidt category.
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3.10 Definition. The radical of C is the ideal J of C generated by the
non-invertible morphisms between indecomposable objects. We denote by
J n the ideal generated by the compositions of any n elements of J , and set
J (n) = J n/J n+1.

3.11 Lemma. Let c be an indecomposable object in C. Then Rad(End(c)) =
J (c, c).

Proof. Clearly Rad(End(c)) ⊆ J (c, c) by definition of J . Let ϕ ∈ J (c, c),

and write ϕ =
∑
αiψiβi with c

αi- ai
ψi- bi

βi- c, the ai, bi being
indecomposable and the ψi being non-isomorphisms. Then αiψiβi cannot be
invertible. Since End(c) is local, αiψiβi ∈ Rad(End(c)), and it follows that
ϕ ∈ Rad(End(c)).

3.12 Definition. A sequence c1-
ν- c2

µ- c3 is called right almost split
sequence if

1. ν ∈ J (c1, c2) and µ ∈ J (c2, c3)

2. ν = ker(µ)

3. µ has the right factorization property : every α ∈ J (x, c3), for some x,
factors through µ:

c2
µ -- c3

x

α ∈ J6
�

∃

Notation: P c
d = C(c, d) and Scd = C(c, d)/J (c, d). (Note that Scd = 0 for

c 6∼= d both indecomposable.) We set Pd = P−
d and Sd = S−

d . Then the Pd
are the projective C-modules and the Sd are the corresponding semisimple
ones.

3.13 Theorem. The following are equivalent:

(i) c1-
ν- c2

µ-- c3 is a right almost split sequence;

(ii) Pc1-
Pν- Pc2

Pµ- Pc3
π-- Sc3 is a minimal projective resolution of

Sc3 in C -mod. (Here π is the canonical projection.)

Proof. We make the following observations:
Firstly ν and µ are in the radical of C if and only if Pν and Pµ are in the

radical of C -mod.



12 3 STRICT τ -CATEGORIES

Secondly,

ν not mono ⇐⇒ ∃ 0 6= α : c0 - c1 : αν = 0

⇐⇒ ∃ 0 6= Pα : Pc0 - Pc1 : PαPν = 0

⇐⇒ Pν not mono.

Thus assume that ν and Pν are both mono. Then, note that exactness at
Pc2 in (ii) means that

∀α : ((α)Pµ = 0 ⇐⇒ ∃β : α = (β)Pν).

Equivalently, ∀α : (αµ = 0 ⇐⇒ ∃β : α = βν) which means that
ν = ker(µ).

Thirdly, µ ∈ J (c2, c3) ⇐⇒ Im(Pµ) ≤ J (−, c3) ⇐⇒ Pµπ = 0, and
the sequence in (i) has the right factorization property if and only if ∀α ∈
J (x, c3) : α = βµ, which is equivalent to ∀α ∈ Ker(π) : α ∈ Im(Pµ).

Thus right almost split sequences are determined uniquely (up to isomor-
phism) by their end term c3.

Denote by τc- - ϑc - c the right almost split sequence ending in c
and by c - ϑ−c -- τ−c the left almost split sequence beginning in c.
These sequences will be called the right and left almost split sequences of c,
respectively.

3.14 Definition. An almost split sequence is a left and right almost split
sequence. Following [9, 10], a strict τ -category will be defined as a Krull-
Schmidt category C where

1. every indecomposable c ∈ Ob C has a right almost split sequence which
is either an almost split sequence or τc = 0;

2. every indecomposable c ∈ Ob C has a left almost split sequence which
is either an almost split sequence or τ−c = 0.

3.15 Definition. An object p in a strict τ -category C is called projective if
τp = 0 and injective if τ−p = 0.

3.16 Lemma. Let C be a strict τ -category. Then the following hold:

1. An object p in C is projective if and only if every short exact sequence
ending in p splits.

2. An object i in C is injective if and only if every short exact sequence
beginning with i splits.
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Proof. In both cases one direction is trivial, since right (respectively left)
almost split sequences cannot be split short exact sequences.

Assume p is projective and that a- - b -- p is a non-split short exact
sequence. Then the following diagram is commutative, where ψ exists by
the factorization property of right almost split sequences, and ϕ is the kernel
morphism.

a-
α

- b
β

-- p

0

ϕ
?
- - ϑp

ψ
?

- p

wwwwww

Now ψ factors through β since αψ = 0. But then the morphism in the right
almost split sequence is a split epimorphism contradicting the definition.

The proof of the second point is dual.

3.17 Remark. For a strict τ -category C the maps τ and τ− induce mutu-
ally inverse bijections between the isomorphism classes of indecomposable,
non-projective and the isomorphism classes of indecomposable non-injective
objects in C. Especially, if C has, up to isomorphisms, only finitely many
indecomposable objects, then the number of isomorphism classes of indecom-
posable projective objects is identical to the number of isomorphism classes
of indecomposable injective objects.

3.18 Theorem. Let C be an abelian Krull-Schmidt category such that any
indecomposable c ∈ Ob C has a left and a right almost split sequence. Then C
is a strict τ -category.

Proof. Assume c indecomposable, non-projective. Then we have the follow-
ing commutative diagram, where g exists by the factorization property of the
left almost split sequence in the second row.

τc-
ν - ϑc

µ -- c

τc

wwwwww
- ν− - ϑ−τc

g
6

µ−
-- τ−τc

h
6

k
6

6

========= k
6

6

Note that ν− is mono. The cokernel morphism h cannot factor through µ
since ν− doesn’t split, so the right column splits. Then the middle column
also splits and the component of ν− which maps to k is 0, since it factors
through µ−. Therefore k = 0 and the two sequences are isomorphic.
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Dually, if c is non-injective its left almost split sequence is an almost split
sequence.

3.19 Theorem. Let C be an abelian Krull-Schmidt category. Assume that
there are only finitely many indecomposable objects in C, and that for any c, d
among these J (c, d) is finitely generated as End(c) and as End(d) module.
Then C is a strict τ -category.

Proof. Let c be an indecomposable object of C. For every indecomposable
d ∈ Ob C let {f di : 1 ≤ i ≤ nd} be an End(d) generating set of J (c, d). Then

c
(fd

i )- ⊕d d
nd -- Cok has the left factorization property with the left

morphism being in J .

Let c
ν−- ϑ−(c)

µ−-- τ−c be a sequence with these two properties in
which the middle term has the smallest possible number of indecomposable
direct summands. Then it is a left almost split sequence.

Dually c has a right almost split sequence.

Thus it follows from Theorem 3.18 that C is a strict τ -category.

The most important examples of strict τ -categories in this thesis will be:

3.20 Theorem. Let A be a representation-finite artinian ring. Then A -mod
is a strict τ -category.

Proof. Let c be a non-projective indecomposable A-module. Then there is a
non-split short exact sequence a- - b -- c with a indecomposable.

If possible take a non-invertible morphism a - ã with ã indecompos-
able such that the pushout of the sequence along this morphism is again
non-split. Replace the sequence by the one obtained by the pushout and
repeat this step. Since there are only finitely many indecomposable objects
and each of them has finite length the composition of a sufficiently large num-
ber of non-invertible morphisms between them is always zero. Therefore one
finally gets a sequence a- - b -- c such that the pushout along any non-
invertible morphism splits. That means that any non-invertible morphism
a - ã must factor through b, so we found a left almost split sequence
ending in c.

Dually, one can find, for any indecomposable non-injective c, a right al-
most split sequence beginning with c. Applying this to a one gets the fol-
lowing commutative diagram, where the first row is left almost split and the
second one is right almost split. The center arrow exists by the factorization
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property of the upper sequence.

a-
α - b

β -- c

a

wwwwww
- γ - d

? δ -- e
?

By the factorization property of the lower sequence and the fact that the
upper one is non-split it follows that the vertical arrows need to be isomor-
phisms.
If c is projective 0 - Rad c - c is a right almost split sequence. If c is
injective c - c/ Soc c - 0 is a left almost split sequence.

For any indecomposable object c ∈ C let D(c) = J (0)(c, c) be the head of
the endomorphism ring of c. Since C is Krull-Schmidt, this is a skewfield.

3.21 Theorem. Let C be a strict τ -category and c, d ∈ C indecomposable.
Then the following hold:

1. In a decomposition of ϑc into indecomposable direct summands there
are exactly dimD(d) J (1)(d, c) summands isomorphic to d.

2. In a decomposition of ϑ−d into indecomposable direct summands there
are exactly dimD(c) J (1)(d, c) summands isomorphic to c.

Especially, d is a direct summand of ϑc if and only if c is a direct summand
of ϑ−d.

Proof. Assume dimD(d) J (1)(d, c) = n. Let {ϕ1, . . . , ϕn} ⊂ J 1(d, c) be rep-
resentatives of a D(d)-basis of J (1)(d, c). Then the dashed arrow in the
following diagram exists by the right factorization property of the horizontal
morphism.

d(n)

ϑc -
�

(
ψ1

...
ψn

)

c

( ϕ1

...
ϕn

)

?

The images of the ψi in J (0)(d, ϑc) are linear independent, therefore (ψi)i is
a split monomorphism and d(n) is a direct summand of ϑc.

Now assume that d(n+1) also is a direct summand of ϑc. Then there is a
direct summand of ϑc isomorphic to d such that ιµ ∈ J 2. (Here ι denotes
the inclusion of the direct summand.) Then ιµ = rµ for some r ∈ J and,
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since ν is the kernel of µ, the map ι − r factors through ν as illustrated in
the following diagram:

d

τc-
ν -�

ϑc

ι− r

? µ - c

But now ι − r ≡ ι 6≡ 0 (mod J ) is a split monomorphism which factors
through ν, a contradiction, since ν ∈ J .

The second statement follows dually.

3.22 Definition. Let C be a strict τ -category. The Auslander-Reiten quiver
of C is the Z2-valued quiver with vertices the isomorphism classes of inde-
composable objects in C, and, whenever J (1)(c, d) 6= 0, an edge c - d
valued (dimD(c) J (1)(c, d), dimD(d) J (1)(c, d)).

Edges valued (1, 1) will be drawn as unvalued edges in order to simplify
the pictures of the Auslander-Reiten quivers.

3.23 Definition. Let FMG be bimodule over two skewfields F and G. Then
the left dual of M is ML = G(HomF (M,F ))F and the right dual of M is
MR = G(HomG(M,G))F .

If FMG has finite F -dimension, then M is naturally isomorphic to MLR

as bimodule. Dually, if it has finite G-dimension, then M ∼=nat M
RL.

3.24 Lemma. Let C be a strict τ -category, c ∈ Ob C indecomposable and
non-projective. Let τc- - ϑc -- c be a fixed almost split sequence. Then
this sequence induces an isomorphism of skewfields D(τc) ∼= D(c).

Proof. Let ϕ ∈ C(c, c). We have the following commutative diagram, in
which ψ exists by the right factorization property of the lower sequence:

τc-
ν - ϑc

µ -- c

τc

ϕ̂
?
- ν - ϑc

ψ
? µ -- c

ϕ
?

We will show that ϕ+ J (c, c) - ϕ̂+ J (τc, τc) with ϕ̂ obtained as in the
diagram is the desired isomorphism.

To see that the map is well-defined let ϕ ∈ J (c, c). Then ϕ factors
through µ, and therefore ϕ̂ factors through ν. So ϕ̂ ∈ J (τc, τc).
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One can also apply the dual construction. Thus one also finds a map
D(τc) - D(c). Clearly these two maps are mutually inverse. It follows
directly from the construction that the two maps are indeed ring homomor-
phisms.

3.25 Theorem. Let C be a strict τ -category, c ∈ Ob C indecomposable and
non-projective. Let τc- - ϑc -- c be a fixed almost split sequence and d
an indecomposable direct summand of ϑc. Then there is an isomorphism of
bimodules D(d)J (1)(d, c)L

D(c)
∼= D(τc)J (1)(τc, d)D(d). (Here the identification

D(c) ∼= D(τc) is induced by the almost split sequence as in Lemma 3.24.)

Proof. First construct a map J (1)(d, c) ⊗D(c) J (1)(τc, d) - D(d): For
ψ ∈ J (d, c) and ϕ ∈ J (τc, d) the factorization properties of the almost
split sequence yield morphisms ψ̃ and ϕ̃ that make the following diagram
commutative.

d

τc-
ν -

ϕ

-

ϑc

ϕ̃

6
................. µ -- c

d

ψ̃

6
.................

ψ

-

To see that the map (ψ + J 2) ⊗ (ϕ+ J 2) - ψ̃ϕ̃+ J is well defined first
assume ϕ ∈ J 2(τc, d). Then ϕ̃ ∈ J (ϑc, d) and therefore ψ̃ϕ̃ ∈ J (d, d). By
the same argument ψ ∈ J 2 implies ψ̃ϕ̃ ∈ J (d, d). To see that the map is D(c)
balanced one must only remember the way D(c) and D(τc) are identified.
With the morphisms as in the following commutative diagram the image of
(the coset of) (ψα, ϕ) is (ψ̃β)ϕ̃ and the image of (ψ, α̂ϕ) is ψ̃(βϕ̃).

d

τc-
ν -

ϕ
-

ϑc

ϕ̃
6
......... µ -- c

τc

α̂
6

- ν - ϑc

β
6

µ -- c

α
6

d

ψ̃
6
.........

ψ
-
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It follows directly from the construction that the map is D(d) linear on both
sides.

Now it is only necessary to check that the constructed map is non-
degenerate in both entries. Assume ϕ ∈ J (τc, d) \J 2(τc, d). Then ϕ̃ cannot
be in the radical and therefore is a split epimorphism. Choose ψ̃ such that
ψ̃ϕ̃ = 1d and ψ = ψ̃ν. Then clearly (ψ + J 2) ⊗ (ϕ + J 2) - 1. Du-
ally one can find, for any ψ ∈ J (d, c) \ J 2(d, c), a ϕ ∈ J (τc, d) such that
(ψ + J 2) ⊗ (ϕ+ J 2) - 1.
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4 Representation-directed artinian rings

In this section, we show that some known results on representation-directed
artinian algebras generalize to artinian rings. In particular, a generalized
version of the Auslander-Reiten formula will be established (4.5). With its
help we will be able to prove that the following two assertions, which are
well-known in case of representation-directed finite dimensional algebras over
fields, remain true for arbitrary representation-directed artinian rings:

1. A module m has projective dimension at most one if and only if there
are no homomorphisms from an injective module to τm (4.6).

2. If a sincere indecomposable module exists, then the global dimension
of the ring is at most two (4.8).

4.1 Definition. A strict τ -category is called directed if, for any indecom-
posable c0, . . . , cn ∈ Ob C and non-isomorphisms ϕi:

c0
ϕ0- c1

ϕ1- · · · ϕn−1- cn
ϕn- c0

at least one of the ϕi is 0. An artinian ring A is called representation-directed
if A -mod is directed.

4.2 Lemma. Let C be a directed strict τ -category, c ∈ Ob C indecomposable.
Then the endomorphism ring of c is a skewfield.

Proof. By definition of directed, any non-isomorphism c - c is zero.

4.3 Definition. For an artinian ring A we have the following sub- and quo-
tient categories of A -mod:

1. The ideal of A -mod generated by the identities on projective modules,
called A -modP or [A -proj].

2. The ideal of A -mod generated by the identities on injective modules,
called A -modI or [A -inj].

3. The stable category A -mod = A -mod /A -modP .

4. The dual to the stable category, A -mod = A -mod /A -modI .

Notation: For m,n ∈ A -mod we write Hom(m,n) = HomA -mod(m,n)
and Hom(m,n) = HomA -mod(m,n).
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4.4 Lemma. Let A be a representation-directed artinian ring, m ∈ A -mod
indecomposable and non-projective and let τm- - ϑm -- m be a fixed al-
most split sequence. Then this sequence induces an isomorphism of bimodules
D(m) ∼= Ext1

A(m, τm).

Proof. Let E ∈ Ext1(m, τm) be the fixed almost split sequence. Then the
map ∆ : D(m) - Ext1(m, τm) : d - dE is obviously a monomorphism
of left vector spaces.

To see that it is also a morphism of right vector spaces remember that an
endomorphism ϕ of m is turned into ϕ̂ ∈ End(τm) by use of the following
diagram (Lemma 3.24).

τm- ν - ϑm
µ -- m

τm

ϕ̂
?
- ν - ϑm

ψ
? µ -- m

ϕ
?

Clearly, ϕ can be assumed to be nonzero and therefore invertible. Then ϕ̂ is
invertible as well. Now the following diagram is commutative.

E : τm- ν - ϑm
µ -- m

PO

Eϕ̂ : τm

ϕ̂
?
- ϕ̂−1ν- ϑm

wwwww
µ -- m

wwwwww

ϕE :

wwwww
τm

wwwwww
- ν - ϑm

ψ
? µϕ−1

-- m

wwwwww

PB

E : τm

wwwwww
- ν - ϑm

wwwww
µ -- m

ϕ
?

It follows that Eϕ̂ = ϕE in Ext1(m, τm). Now ∆(dϕ) = dϕE = dEϕ̂ =
∆(d)ϕ̂.

It remains to see that ∆ is surjective. Let F be any non-split extension
in Ext1(m, τm). Then we get the following commutative diagram, where the
center morphism exists by the left factorization property of the almost split
sequence.

F : τm- - f -- m

E : τm

wwwwww
- ν - ϑm

ψ
6

µ -- m

ϕ
6
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Since the almost split sequence does not split ϕ is nonzero and therefore
invertible. Hence F = ϕ−1E ∈ ∆(D(m)).

4.5 Theorem (Auslander-Reiten formula). Let A be a representation-
directed artinian ring, m,n ∈ A -ind. Then

Hom(n, τm)R ∼= Ext1(m,n) ∼= Hom(τ−n,m)L

Proof. For m projective or n injective all three objects are clearly zero, so
the formula holds in that case.

Let m be indecomposable, non-projective and fix an almost split sequence
ending in m (or, equivalently, an isomorphism Ext1(m, τm) ∼= D(m)). Then
the composition

∆ : Ext1(m,n) ⊗ Hom(n, τm) - Ext1(m, τm) - D(m)

is a homomorphism of bimodules.
Let ϕ ∈ HomI(n, τm). That means there is an injective module i and

there are morphisms ϕ1 : n - i and ϕ2 : i - τm such that
ϕ = ϕ1ϕ2. Now for any F ∈ Ext(m,n) : ∆(F ⊗ ϕ) = Fϕ1ϕ2 = 0, since
Fϕ1 ∈ Ext1(m, i) = 0. Therefore, ∆ induces a morphism Ext1(m,n) ⊗
Hom(n, τm) - D(m) which will also be called ∆.

It remains to see that this new map ∆ is non-degenerate in both entries.
First let F ∈ Ext1(m,n) be any non-split extension. By the right factor-

ization property one can find a morphism ψ making the following diagram
commutative.

F : n- - f -- m

E : τm

ϕ
?
- ν - ϑm

ψ
? µ -- m

wwwwww

But now the fixed almost split sequence is the pushout of F along ϕ and
therefore ∆(F ⊗ ϕ) = 1.

Now assume ϕ ∈ Hom(n, τm) such that ϕ 6= 0 in A -mod. Fix an injective
coresolution I : n- - i -- Ω−n of n. The pushout Iϕ of I along ϕ cannot
split since ϕ doesn’t factor through i. Therefore the following diagram can
be completed commutatively by the left factorization property of the almost
split sequence.

I : n- - i -- Ω−n

PO

Iϕ : τm

ϕ
?
- - e

?
-- Ω−n

wwwww

ψIϕ = E :τm

wwwwww
- - ϑm

6

-- m

ψ
6
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Therefore, ∆(ψI ⊗ ϕ) = 1.
The first isomorphism of the theorem now follows, the second one is

dual.

4.6 Corollary. Let A be a representation-directed artinian ring, m ∈ A -ind.
Then the following hold: (Here pd and id denote the projective and injective
dimension, respectively.)

1. pdm ≤ 1 ⇐⇒ ∀i ∈ A -inj : Hom(i, τm) = 0.

2. idm ≤ 1 ⇐⇒ ∀p ∈ A -proj : Hom(τ−m, p) = 0.

Proof. We will prove the first claim, the second one is dual.
Let n be any module and denote by Ω−n its first cosyzygy module. Then

Ext2(m,n) = Ext1(m,Ω−n) = Hom(Ω−n, τm)R.
Firstly, if Hom(i, τm) = 0 for every injective i then Hom(Ω−n, τm) =

0 for every n, since Ω−n is the epimorphic image of an injective module.
Therefore Ext2(m,−) = 0 which is equivalent to pdm ≤ 1.

Secondly, assume conversely that there is an injective module i and a
nonzero morphism ϕ : i - τm. We may assume i to be indecomposable
and i and ϕ chosen in such a way that ϕ does not factor through any other
indecomposable injective module. That is possible since A is representation-
directed. Clearly, ϕ cannot be a monomorphism, since then i would be a
direct summand of τm. So the image v of ϕ is not injective and the induced
morphism v - τm does not factor through any injective module. By
choosing n = ker(ϕ) we get Ω−n = v and Hom(Ω−n, τm) 6= 0. By the
equation above this is implies pdm ≥ 2.

4.7 Definition. Let A be an artinian ring. Following [11], a module m ∈
A -mod will be called sincere if every simple A-module is a composition factor
of m. The artinian ring A will be called sincere if it has an indecomposable
sincere module.

4.8 Corollary. Let A be a representation-directed sincere artinian ring.
Then the global dimension gldA is at most 2.

Proof. Let m be a sincere indecomposable module and n any indecomposable
module. We have to show that pdn ≤ 2, or, equivalently, that pd Ωn ≤ 1,
where Ωn denotes the first syzygy module of n. Assume this is false. Then
by Corollary 4.6 there is an indecomposable injective module i and a nonzero
morphism i - τΩn. Let s be an indecomposable direct summand of Ωn
such that there is a nonzero morphism i - τs. Let d be a direct summand
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of ϑs and p an indecomposable direct summand of the projective cover of n
such that Hom(s, p) 6= 0. Then there are nonzero maps

i - τs - d - s - p - m - i.

The last two maps exist because m is sincere. This contradicts the definition
of a representation-directed ring.
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5 Species and hereditary artinian rings

The aim of this section is to understand how the module category of a heredi-
tary artinian ring can be manipulated in such a way, that a simple projective
representation is eliminated. This will be done in the category of repre-
sentations of a species, so we first have to verify that these two categories
are, for a suitable species, equivalent (5.5). Lastly we will see in 5.12 that
successively eliminating projective objects gives us a proof that the inde-
composable modules over a hereditary representation-finite artinian ring are
uniquely determined by their dimension vectors.

5.1 Definition. An artinian ring is said to be hereditary if all submodules
of projective modules are projective.

5.2 Definition. A species S is a finite set of skewfields Di, i ∈ I together
with Di-Dj-bimodules Mij. All Mij and their duals will be assumed to be
finite-dimensional on both sides. A species will be called ordered if there
is an ordering ≤ on I such that Mij = 0, ∀j ≤ i. For simplicity choose
I = {1, . . . , n} with the natural order. A species is called simply connected if
its underlying graph is a tree. (By the underlying graph we mean the graph
with vertices I and arrows i - j whenever Mij 6= 0.) Clearly, a simply
connected species is ordered.

A representation of a species S is a set of finite-dimensional vector spaces

Di
Vi together with Di linear maps Mij⊗Dj

Vj - Vi. We denote by Rep(S)
the category of all representations of S.

Notation: A species S will be written as a quiver with the skewfield Di

at the position of the i-th vertex and an arrow labeled Mij from Di to Dj

whenever Mij 6= 0.
An S-representation will be written as the same quiver, but with the

vector spaces Vi at the position of the i-th vertex and with unlabeled arrows.
The maps Mij ⊗ Vj - Vi will mostly be canonical, so they need not be
explicitly given. Alternatively, if we do not know the underlying graph, we
will also sometimes write an S-representation as a tuple of vector spaces.

5.3 Lemma. Let S be an ordered species. Then Rep(S) ≈ A -mod, where A
is the hereditary artinian ring



D1 M̃ij

. . .

0 Dn


 , M̃ij =

⊕

i=i0<i1<···<ik=j

Mi0i1 ⊗Mi1i2 ⊗ · · · ⊗Mik−1ik .
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Proof. It follows directly from the definitions that the two categories are
equivalent. Thus it remains to show that the artinian ring A is indeed
hereditary. Clearly the indecomposable projective A-modules are exactly
the columns of the matrix. Denote by Pn the projective module in the n-th
column of the matrix. It is sufficient to show that the radical of any Pn is
again projective.

RadPn =




⊕

i=i0<i1<···<ik=n

Mi0i1 ⊗Mi1i2 ⊗ · · · ⊗Mik−1ik

0



i

=
⊕

j<n




⊕

i=i0<i1<···<ik=j

Mi0i1 ⊗Mi1i2 ⊗ · · · ⊗Mik−1ik

Dj

0




dimDj
Mjn

i

=
⊕

j<n

P
dimDj

Mjn

j

Clearly this finite direct sum of projective modules is projective.

5.4 Corollary. Let A be a graded hereditary artinian ring. Then A -mod ≈
Rep(S) for an ordered species S.

Proof. Let {Pi | 1 ≤ i ≤ n} be the different indecomposable projective
modules (up to isomorphism). Since A is hereditary we may assume that
they are ordered in such a way that Hom(Pi, Pj) = 0 whenever i > j. Then,
for Di = End(Pi) and Mij = J (1)(Pi, Pj), the ring of the lemma is Morita
equivalent to A.

5.5 Corollary. Let A be a simply connected hereditary artinian ring. Then
A -mod ≈ Rep(S) for a simply connected species S.

Proof. Since A is hereditary, for P and Q projective there is a non-trivial
homomorphism P - RadQ/Rad2 Q if and only if P is a direct summand
of RadQ. As A is also simply connected, whenever J (1)(P,Q) 6= 0 for P and
Q indecomposable projective we have J (1)(P,Q) = Hom(P,Q). Therefore A
is graded and the first corollary can be applied.

5.6 Construction. Let S be a species with a vertex i such that for all ver-
tices k the bimodule Mki is zero. (That is equivalent to saying that i is a
source of the underlying graph.) Assume i = 1. Let V = (Vi) be a represen-
tation. Adding up the homomorphisms we get a map ⊕i M1i ⊗ Vi - V1.
This map is surjective if V has no direct summands of the form (D1, 0, . . . , 0).
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Taking the kernel of this map one gets a map V̂1
- - ⊕iM1i⊗Vi with com-

ponents V̂1
- M1i⊗Vi. Now M1i⊗Vi = MRL

1i ⊗Vi = Hom(MR
1i, Di)⊗Vi =

Hom(MR
1i, Vi), so we constructed maps V̂1

- Hom(MR
1i, Vi). Taking the

adjoints we obtain maps MR
1i ⊗ V̂1

- Vi. Thus we have constructed a
representation of S ′, where S ′ is the species with the same skewfields as S
and bimodules M ′

ij, where M ′
ij = Mij for i 6= 1 6= j, M ′

1i = 0 and M ′
i1 = MR

1i.
This construction yields a functor Rep(S) - Rep(S ′). By applying the

above steps inversely, we can also construct a functor Rep(S ′) - Rep(S),
and these two functors induce mutually inverse equivalences between the
subcategories {V ∈ Rep(S) | V has no direct summand (D1, 0, . . . , 0)} of
Rep(S) and {V ∈ Rep(S ′) | V has no direct summand (D1, 0, . . . , 0)} of
Rep(S ′). Note that the S representation (D1, 0, . . . , 0) is simple projective,
while the S ′ representation (D1, 0, . . . , 0) is simple injective.

The constructed functors are called Coxeter functors in [6, 7].

5.7 Definition. Let S = (Di,Mij) be a species. Then we define the two
species SR and SL as SR = (Di,M

RR
ij ) and SL = (Di,M

LL
ij ).

Note that, if there is a field k in the center of all Di and operating
centrally on the Mij, such that, for all i dimkDi < ∞, then S = SL = SR.
This follows, because the equality

Hom(Mij, Di) ∼= Hom(Mij,Hom(Di, k)) ∼= Hom(Mij, k)

holds under these conditions. The rings corresponding to these species by
Lemma 5.3 are finite dimensional k-algebras.

5.8 Theorem. Let S be a simply connected species. Then there are functors
τ̂ : RepS - Rep(SR) and τ̂− : RepS - Rep(SL) with

1. τ̂ |S -proj = 0

2. τ̂−|S -inj = 0

3. τ̂ and τ̂− induce mutually inverse equivalences between the S repre-
sentations without projective direct summands and SR representations
without injective direct summands.

Proof. Since S is simply connected one can construct τ̂ by applying the
Coxeter functors constructed in 5.6 for the different indices successively (see
Example 5.10).

Note that, in case the species corresponds to finite dimensional algebra
over a field, τ̂ and τ coincide. This motivates to vary the definition of the
Coxeter transformation (see [11]) analogously:
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5.9 Definition. Let the Coxeter transformation be the linear map Φ̂ on the
Grothendieck group defined by Φ̂ : K0[S] - K0[SR], Φ̂([Pi]) = −[Ii],
where the Pi are the projective S-representations and the Ii are the injective
SR-representations.

5.10 Example. Let S be the species k
k- k

k- k for some field k. Then
Rep(S) is a strict τ -category with Auslander-Reiten quiver Γ. Let Γ′, Γ′′

and Γ′′′ be the Auslander-Reiten quivers of the different species occurring
“on the way to SR”. They are, together with the corresponding species,
depicted in Table 1 on page 28, where the dashed vertical lines symbolize the
identification by the Coxeter functor in 5.6.

For the remainder of this section assume that Rep(S) is a strict τ -category.
By Theorem 3.20 this assumption is justified in case S is representation-finite.

5.11 Theorem. Let S be a species. Let V be an S-representation without
projective direct summands. Then [τ̂ (V )] = Φ̂[V ].

Proof. The Coxeter functor constructed in 5.6 (call it F for the moment)
induces a linear map f between the Grothendieck groups with f([P1]) = −[I1]
and f([Pi]) = [Pi] for i 6= 1. Then [F(V )] = f [V ] for all representations
V without direct summands isomorphic to P1. Iterating this the assertion
follows.

An S-representation R is called preprojective if, for some n, τ nR = 0
(or, equivalently, τ̂nR = 0). We will denote the different preprojective S
representations by P S

i,k = (τ−)kP S
i . If S is representation-finite then every

representation is of that form. Then, by the above theorem, [P SR

i,k−1] = Φ̂[P S
i,k].

5.12 Theorem. Let S be a simply connected species. Then any two non-
isomorphic indecomposable preprojective representations have linearly inde-
pendent dimension vectors.

Proof. Assume α[P S
i,k] = β[P S

j,l] with α, β ∈ N \ {0}, S a simply connected
species, i, j, k, l such that max{k, l} is minimal. It cannot happen that k =
l = 0, since that would mean that two nonisomorphic projective modules
have linearly dependent dimension vectors. If one of k and l is zero, for
instance k = 0 and l > 0, then Φ̂[P S

i,k] < 0, while Φ̂[P S
j,l] > 0, a contradiction.

If both k and l are positive, then [P SR

i,k−1] = Φ̂[P S
i,k] = Φ̂[P S

j,l] = [P SR

j,l−1], which
contradicts the minimaltity of max{k, l}.

5.13 Corollary. The indecomposable representations of a simply connected
representation-finite species are uniquely determined by their dimension vec-
tors.
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S : k Γ : P1
�.............................. R �............................... I3

k

k
-

P2
�..............................

-
-

I2

-
-

k

k
-

P3

-
-

k Γ′ : P1
�.............................. I3

k

k -

P2
�..............................

-

I2

-
-

k

k
-

P3
�..............................

-
-

I1

-

k Γ′′ : P1
�.............................. I3

k

k
-

P2
�..............................

-
-

I2

-

k

k -

P3
�..............................

-

I1

-
-

SR : k Γ′′′ : P1
�.............................. R �............................... I3

k

k
-

P2
�..............................

-
-

I2

-
-

k

k
-

P3

-
-

Table 1: Successive application of Coxeter functors
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5.14 Corollary. The indecomposable modules of a simply connected hered-
itary representation-finite artinian ring are uniquely determined by their di-
mension vectors.
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6 Dimension sequences — hereditary artinian

rings with two projective modules

In [5] Dowbor, Ringel and Simson introduce dimension sequences, which
they use to combinatorially classify the Auslander-Reiten quivers of heredi-
tary artinian rings with exactly two indecomposable projective modules. In
this section we will use their approach to show in 6.7 that the matrix ring(
F FMG

0 G

)
, with M a bimodule over two skewfields F and G, is representation

finite if and only if a sequence of dimensions of M and its duals is a dimension
sequence. In order to do so, we will need to prove that the homomorphisms
between projective modules are directly related (i.e. more than by taking
duals through the entire Auslander-Reiten quiver) to the homomorphisms
between the corresponding injective modules (6.6).

6.1 Definition. The set D of all finite dimension sequences is constructed
as follows:

1. (0, 0) is a dimension sequence.

2. If (d1, . . . , dn) is a dimension sequence then so is
(d1, . . . , di−1, di + 1, 1, di+1 + 1, di+2, . . . dn).

For a dimension sequence d its first entry will be called d1, the second d2

and so on continuing cyclically.

6.2 Lemma. Let (di)i=1...n be a finite sequence of nonnegative integers. Then
(di)i=1...n is a dimension sequence if and only if there are sequences (xi)i=0...n+1

and (yi)i=0...n+1 of integers such that the following properties hold.

1. x0 = y1 = xn = yn+1 = 0, y0 = xn+1 = −1, x1 = yn = 1.

2. xi > 0, yi > 0 ∀i ∈ {1 . . . n}.

3. dixi = xi−1 + xi+1, diyi = yi−1 + yi+1 ∀i ∈ {1 . . . n}.

Proof. The proof is done by induction on the length n of the sequence.
For n = 1 there are no sequences either way. For n = 2 ( xy ) can only be(

0 1 0 −1
−1 0 1 0

)
, and therefore d = (0, 0).

Assume n > 2 and d a dimension sequence of length n. Then there is a
dimension sequence d̃ of length n− 1 and an i such that

d = (d̃1, . . . , d̃i−1, d̃i + 1, 1, d̃i+1 + 1, d̃i+2, . . . d̃n−1).
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Let x̃, ỹ be the corresponding sequences, which exist inductively. Then

x = (x̃0, . . . , x̃i, x̃i + x̃i+1, x̃i+1, . . . , x̃n) and

y = (ỹ0, . . . , ỹi, ỹi + ỹi+1, ỹi+1, . . . , ỹn)

satisfy the equations in the lemma.
Conversely, assume that such sequences x, y exists. Then it can be seen

by induction on i that det ( xi xi+1
yi yi+1 ) = 1 ∀i ∈ {0 . . . n}. Therefore ( xi

yi ) 6= 0.
If d(i) = 0 for some i then ( xi−1

yi−1 ) + ( xi+1
yi+1 ) = 0. Hence one of these vectors

has a negative entry, so i can only be 1 or n. If d(1) = 0 then ( xy ) can only
be
(

0 1 0 −1
−1 0 1 d2

)
, therefore n = 2. Analogically d(n) cannot be zero. Therefore

d(i) > 0 ∀i.
Assume, that d(i) > 1 ∀i. Then the norms |( xi

yi )| grow monotonously, as
|( xi
yi )| = |di−1 ( xi−1

yi−1 ) − ( xi−2
yi−2 )| ≥ 2 |( xi−1

yi−1 )|−|( xi−2
yi−2 )| ≥ |( xi−1

yi−1 )|, where the last
inequality holds inductively. That contradicts ( xn

yn ) = ( 0
1 ).

Therefore there is an i with di = 1. We set

d̃ = (d1, . . . , di−1 − 1, di+1 − 1, . . . , dn),

x̃ = (x1, . . . , xi−1, xi+1, . . . , xn) and

ỹ = (y1, . . . , yi−1, yi+1, . . . , yn).

These three sequences satisfy the conditions of the lemma, so, inductively, d̃
is a dimension sequence. Now the second point of the definition of dimension
sequences says that d is a dimension sequence as well.

6.3 Remark. The proof of the above lemma also shows that, for any di-
mension sequence and any “1” in the sequence, one can apply the inverse
operation to the second point of the definition and thereby get a dimension
sequence again.

6.4 Definition. Let ∼ be the equivalence relation on the set of all finite
sequences generated by

1. (xi)i=1...n ∼ (xi)i=1...kn

2. (xi)i=1...n ∼ (xi+1)i=1...n

We call two sequences (xi)i=1...n and (yi)i=1...m equivalent, if (xi)i=1...n ∼
(yi)i=1...m.

6.5 Theorem. Let A be an artinian ring. Let S1, S2 be simple A-modules, Pi
and Ii the corresponding indecomposable projective and injective ones. Then
the following holds:

D(S1) Hom(P1,RadP2/Rad2 P2)D(S2)
L ∼= D(S2) Ext(S2, S1)D(S1)

∼= D(S1) Hom(Soc(I1/ Soc I1), I2)D(S2)
R.
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Proof. We will first prove the first isomorphism. In order for the assertion
to make sense at all, one should first note that D(P1) = D(S1) and that
RadP2/Rad2 P2 is indeed a right D(P2)-module.

Set M = RadP2/Rad2 P2 and N = TrM S1, where the trace TrM S1 of
S1 in M is the sum of all epimorphic images of S1 in M . Let B be the
component of the semisimple ring A/RadA corresponding to S1. (Then B
is a full matrix ring over D(S1).) Now we clearly have a Morita equivalence
([1])

D(S1) -mod
S1⊗D(S1)−-∼�
HomB(S1,−)

B -mod .

Therefore the equality between the second and third line of the following
calculation holds.

HomA(P1,M)L = HomA(S1,M)L = HomA(S1, N)L = HomB(S1, N)L

= HomD(S1)(HomB(S1, N), D(S1))

= HomB(N, S1 ⊗D(S1)) = HomB(N, S1)

= HomA(N, S1) = HomA(M,S1)

Note that Ext1
A(S2, S1) = HomA(RadP2, S1), since no nonzero homomor-

phism RadP2
- S1 can factor through RadP2

- - P2. Therefore, and
because S1 is semisimple, Ext1

A(RadP2, S1) = HomA(M,S1). The first iso-
morphism now follows.

In order to show the second isomorphism, one should note that, setting
M = Soc(I1/ Soc I1), N = TrM S2 and B the component of S2 in A/RadA,
one gets a Morita duality (see [1])

mod-D(S2)
HomD(S2)(−,S2)

-∼�
HomB(−,S2)

(B -mod)op.

The rest of the proof is analog to the proof of the first isomorphism.

6.6 Corollary. Let A be a hereditary artinian ring. Let Si (i ∈ {1, 2}) be
simple A modules and Pi and Ii the corresponding projective and injective
ones. Then the following holds:

J (1)(P1, P2)
L ∼= Ext(S2, S1) ∼= J (1)(I1, I2)

R.

Notation: For a bimodule M over two skewfields we will write M 0L =
M0R = M , MnL = (M (n−1)L)L, MnR = (M (n−1)R)R, M−nL = MnR and
M−nR = MnL for any positive n.
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6.7 Theorem. Let F and G be skewfields, M a bimodule. The artinian ring(
F FMG

0 G

)
is representation-finite if and only if there is an n such that MnR ∼=

M as bimodules (this especially means F ∼= G in case n is odd), and the
sequence (dimGM, dimF M

R, dimGM
RR, . . . , dimleftM

(n−1)R) is a dimension
sequence.

Proof. The ring
(
F FMG

0 G

)
is representation-finite if and only if its Auslander-

Reiten-Quiver is of the form

(
F
0

)
�............................... τ

(
F
0

)
τ−
(

0
G

)
�..............................

(
0
G

)

· · ·
(
M
G

)
�..............................

(d
2
,d

3
)-

(d
1 ,d

2 )-

τ

(
M
G

)

(d
3 ,d

4 )-

I1

(d
n
−
1
,d

n
) -

(d
n
−
2 ,d

n
−
1 )-

Assume that there are (up to isomorphisms) n indecomposable modules.
As M = Hom(P1, P2), Theorem 3.25 implies Hom(I1, I2)

(n−2)L and, for any i,
di = dimleftM

(i−1)R. By Corollary 6.6 we have Hom(P1, P2) = Hom(I1, I2)
RR,

so M ∼= MnR.
Let ( xi

yi ) be the dimension vector of the i-th module, x0 = yn+1 = 0,
y0 = xn+1 = −1. Then x, y and d satisfy the conditions of Lemma 6.2 and
therefore d is a dimension sequence.

Conversely, if the constructed sequence is a dimension sequence, then
the dimension vectors of the modules in the Auslander-Reiten quiver can
be calculated in the same way as the ( xi

yi ) are in Lemma 6.2. If a (n + 1)-
st module existed, its dimension vector would be negative, a contradiction.
Therefore the ring is representation-finite.

Bimodules M with the property that an n exists such that MnR ∼= M and
(dimGM, dimF M

R, dimGM
RR, . . . , dimleftM

(n−1)R) is a dimension sequence
will be called dimension sequence bimodules.

6.8 Remark. Clearly bimodules with dimension sequence (1, 1, 1), (1, 2, 1, 2)
and (1, 3, 1, 3, 1, 3) exist (take for instance field extensions of degree 1, 2 and
3, respectively). It is shown in [13] that a dimension sequence bimodule with
dimension sequence (1, 2, 2, 1, 3) exists.

6.9 Remark. The existence of a dimension sequence bimodule with dimen-
sion sequence (1, 2, 2, 1, 3) especially shows that there is in general, even for
a hereditary representation-finite artinian ring A, no equivalence between
A -proj and A -inj. Such an equivalence always exists for an artinian algebra
A.
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6.10 Lemma. If FMD and DNG are bimodules over skewfields D, F and G,
such that dimDN <∞ or dimDM

L <∞, then (M ⊗N)L = NL ⊗ML.

Proof. We have Hom(N,ML) = Hom(N,D) ⊗ML since at least one of N
and ML is a finite dimensional vector space over D, so

(M ⊗N)L = Hom(M ⊗N,F ) = Hom(N,Hom(M,F )) = Hom(N,ML)

= Hom(N,D) ⊗ML = NL ⊗ML,

proving the lemma.

6.11 Lemma. Let FMD and DNG be bimodules over the skewfields D, F
and G. If

(
F FM⊗DNG

0 G

)
is representation-finite and M 6= 0, then

(
D DNG

0 G

)
is

representation finite as well.

Proof. Assume that
(
D DNG

0 G

)
is not representation-finite. Let mi and ni

be dimleftM
(i−1)R and dimleftN

(i−1)R, respectively. Then, by Lemma 6.10,
the dimensions dimleft(M ⊗ N)(i−1)R must be mini. Let li be the length of
the i-th module in the Auslander-Reiten quiver of

(
F FM⊗DNG

0 G

)
and ki the

length of the i-th module in the Auslander-Reiten quiver of
(
D DNG

0 G

)
. By

the assumption ki > 0 for all positive i. Let qi = li/ki. Then

qi+1 =
li+1

ki+1
=
minili − li−1

niki − ki−1
=
miniqiki − qi−1ki−1

niki − ki−1

= miqi +
(miqi − qi−1)ki−1

ki+1

Therefore, one can inductively see that the sequence (qi)i grows monotonously.
This clearly implies li > 0 for all positive i, so

(
F FM⊗DNG

0 G

)
is also represen-

tation infinite.
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7 Combinatorial aspects of simply connected

representation-finite artinian rings

In this section, it is first shown that, assuming the necessary skewfields and
bimodules exist, the translation quivers coming from a combinatorial con-
struction (7.1) are exactly the ones which are Auslander-Reiten quivers of
some simply connected artinian ring. Next the complexity of our experiments
with this construction is reduced in 7.6 by showing that cyclically shifting all
dimension sequences has only little influence on the representation theory of
the corresponding artinian ring and especially does not alter the number of
indecomposable modules. Finally, it will be proved in 7.7 that the indecom-
posable modules of a simply connected representation-finite artinian ring are
uniquely determined by their dimension vectors, by combinatorially reducing
the question to the case of hereditary rings which has already been treated
in 5.12.

In the following construction, we will build a translation quiver Γ. We
will start with a finite quiver Q. The vertices of Q are to become the τ -orbits
of Γ and the arrows in Q represent arrows between these τ -orbits. Since, in
the Auslander-Reiten quiver of an artinian ring, the values on the arrows
cyclically run through a dimension sequence, we value each arrow in Q with
a dimension sequence. In order to also get the Auslander-Reiten quivers
of non-hereditary artinian rings, we have to introduce a “start function”
s, which tells every τ -orbit at which position its projective vertex is to be
placed. Lastly, a length function l is needed, which is calculated in the same
way as the lengths of modules calculate in an Auslander-Reiten quiver, to
know when a τ -orbit is complete.

7.1 Construction. Let Q be a finite quiver with vertices Q0 and edges Q1.
Let d : Q1

- D\{(0, 0)} ((0, 0) is represented by “no arrow”) be a function
associating to each arrow a dimension sequence and s : Q0

- N such that
s(j) − s(i) ∈ 2N + 1 whenever there is an arrow from i to j.

We will define inductively a length function l : Q0 × N - N. Then we
can define the translation quiver Γ = (Γ0,Γ1, τ) by

Γ0 = {(i, n) ∈ Q0 × N | l(i, n) > 0}
Γ1 = {(i, n− 1)

(d1,d2)- (j, n) | l(i, n− 1) > 0, l(j, n) > 0 and [(1) or (2)]}
with

(1) : (i - j) ∈ Q1 and (d1, d2) = (d(i - j)n−s(i), d(i - j)n−s(i)+1)

(2) : (j - i) ∈ Q1 and (d1, d2) = (d(j - i)n−s(j), d(j - i)n−s(j)+1)
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τ(i, n) = (i, n− 2) if (i, n− 2) ∈ Γ0

For m ∈ Γ0 we will call l(m) the length of m.
The function l is constructed inductively by the following rules:

1. l(i, n) = 0 if n < s(i)

2. l(i, n) = (
∑

(j - i)∈Q1
d(j - i)0 · l(j, n− 1)) + 1 if n = s(i)

3. l(i, n) = 0 if n > s(i) and l(i, n− 2) = 0

4. l(i, n) = min{0,
∑

(j - i)∈Q1
d(j - i)n−s(i) · l(j, n− 1)

+
∑

(i - j)∈Q1
d(i - j)n−s(j) · l(j, n− 1)

−l(i, n− 2)}
if n > s(i) and l(i, n− 2) > 0

These make our length function behave like the length of modules calculate
in an Auslander-Reiten quiver.

7.2 Example. Let Q be the quiver 1 - 2 - 3. Let d : Q1
- D

be defined by d(1 - 2) = (1, 2, 2, 1, 3) and d(2 - 3) = (1, 1, 1) and
s : Q0

- N by s(1) = 1, s(2) = 2 and s(3) = 5. Then all conditions of
Construction 7.1 are met. The translation quiver obtained by the construc-
tion then is the following:

(1,1)
1

�................... (1,3)
3

�................... (1,5)
1

�................... (1,7)
3

�................... (1,9)
1

(2,2)
2

�...................(2
,2
)

-
(1,2)-

(2,4)
4

�...................(1
,3
)

-
(2,1)-

(2,6)
4

�...................(1
,2
)

-
(3,1)-

(2,8)
2

(2
,1
)

-
(2,2)-

(3,5)
5

(1
,1
)

-
(1,1)-

Here, at the position of each vertex, the name of the vertex is written in the
first line, and its length in the second one.

7.3 Theorem. Let A be a simply connected representation-finite artinian
ring. Then the Auslander-Reiten quiver ΓA of A is a translation quiver ob-
tained in Construction 7.1. The quiver Q needed for the construction is also
simply connected.

Proof. The only thing which is not directly clear is the assertion that the
arrows of Q are indeed valued with dimension sequences. To see that, we will
show that Hom(M,P ) is a dimension sequence bimodule for P an arbitrary
indecomposable projective module and M any direct summand of its radical.
Let P ′ be an indecomposable direct summand of the projective cover of M .
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First, we will see that Hom(P ′, P ) is a dimension sequence bimodule. Let
I = Tr(A -proj -ind \{P, P ′}) be the trace of all indecomposable projective
modules which are not isomorphic to P or P ′, and let B = A/I. Then B -mod
is a subcategory of A -mod and therefore B is also representation-finite. As
P/IP and P ′/IP ′ are the only projective B modules, Theorem 6.7 implies
Hom(P ′, P ) is a dimension sequence bimodule.

We can write B (up to Morita equivalence) as
(

End(P ′) Hom(P ′, P )
0 End(P )

)

=

(
End(P ′)

⊕
M̃ Hom(P ′, M̃)

⊗
End(M̃) Hom(M̃, P )

0 End(P )

)
,

where the direct sum runs through the indecomposable direct summands of
ϑP . If more than one summand in this decomposition where nonzero, then
Hom(P ′, P ) could not be a dimension sequence bimodule. Therefore we may
assume Hom(P ′, P ) = Hom(P ′,M) ⊗ Hom(M,P ). Now Lemma 6.11 says
that Hom(M,P ) is also a dimension sequence bimodule.

7.4 Theorem. Let Q, d and s be as in Construction 7.1. Assume further
that there are skewfields Di for i ∈ Q0 and dimension sequence bimodules
Mij for (i - j) ∈ Q1 with corresponding dimension sequence d(i - j).
Then the translation quiver Γ obtained in the construction is a component of
the Auslander-Reiten quiver of some artinian ring.

Especially, if Γ is finite, then it is the Auslander-Reiten quiver of a
representation-finite artinian ring.

Proof. Without loss of generality we may assume that the first τ -orbit starts
last, that means s(1) = maxi s(i).

Inductively, there is an artinian ring B, such that the Auslander-Reiten
quiver of B comes from Construction 7.1 applied to Q \ {1} (with d and s
restricted accordingly). Let Xi ∈ B -ind be the indecomposable B-modules
in position (i, s(1) − 1) in the Auslander-Reiten quiver of B -mod. Set

A =

(
B ⊕iXi ⊗Di

Mi1

0 D1

)
.

If P =

(
⊕Xi ⊗Di

Mi,1

D1

)
it the projective A-module in the first τ -orbit, then

obviously Rad(P ) =
⊕(

Xi

0

)dimDi
Mi,1

, and

HomA(

(
Xi

0

)
, P ) = HomB(Xi,⊕Xi ⊗Di

Mi,1) = HomB(Xi, Xi ⊗Di
Mi,1).
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The map

Di
Mi1D1

-
Di

Hom(Xi, Xi ⊗Di
Mi,1)D1

m - [x - m⊗ b ]

is a monomorphism of bimodules. It is surjective, since the left dimensions
of both objects are identical. Hence the edges connecting P to the original
quiver are exactly the ones required.

Adding up everything we find that projective modules in the Auslander-
Reiten-Quiver behave just like those in the given translation quiver. Since the
lengths also calculate in the same way, the quivers must be isomorphic.

7.5 Remark. This shows that, more or less (modulo the existence of suitable
skewfields and bimodules), every translation quiver which comes from a sim-
ply connected quiver and behaves correctly on a length function, is indeed the
Auslander-Reiten quiver of some artinian ring. Therefore it is now possible
to combinatorically draw such quivers in order to see what Auslander-Reiten
quivers can look like. A computer program (see appendix B for the source
code) helped to quickly do the calculation.

For a vertex v in the Auslander-Reiten quiver of an artinian ring, we will
denote the corresponding indecomposable module by mv.

7.6 Theorem. Let Q, d, s,Di and Mij be as in Theorem 7.4. Let dR be
the function sendig each arrow to the dimension sequence d sends it to, but
rotated cyclically one step. That means dR(i - j)k = d(i - j)k+1.

Then Q, dRR, s, Di and MRR
ij also meet the conditions of 7.4, and the un-

valued quivers corresponding to the preprojective components of the different
Auslander-Reiten quivers are isomorphic.

Further, if Hom(mv, mw) = 0 interpreted as homomorphisms in one ring,
then Hom(mv, mw) = 0 interpreted as homomorphisms in the other.

Proof. It is clear that Q, dRR, s, Di and MRR
ij satisfy the conditions of 7.4.

Let A,ARR,Γ and ΓRR be the corresponding artinian rings and translation
quivers.

For the first statement one only needs to find out that Γ and ΓRR “stop
at the same points”.

We will show, by induction on w:

HomARR(m(v,i), m(w,j)) ∼= HomA(m(v,i), m(w,j))
RR

For (v, i) = (w, j) this is true by construction of ARR.
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For w = v+ 1 either s(j) = w (in that case the claim is the definition) or
HomARR(m(v,i), m(w,j)) ∼= HomARR(m(w−2,j), m(v,i))

R by Theorem 3.25. Then

HomA(m(v,i), m(w,j))
RR ∼= HomA(m(w−2,j), m(v,i))

RRR

∼= HomARR(m(w−2,j), m(v,i))
R

∼= HomARR(m(v,i), m(w,j))

so the claim holds in that case.
Let m(w−2,j)

- - ⊕r m(w−1,r)
- m(w,j) be the right almost split se-

quence of m(w,j). By the factorization property we have the following iso-
morphism.

HomA(m(v,i), m(w,j)) ∼=
⊕k HomA(m(v,i), m(w−1,k)) ⊗ HomA(m(w−1,k), m(w,j))

⊕r(HomA(m(v,i), m(w−2,j))νr ⊗ µr)

The map HomA(m(v,i), m(w−2,j)) - ⊕r (HomA(m(v,i), m(w−2,j))νr ⊗ µr) is
an isomorphism of left vector spaces and by Lemma 4.4 the right vector space
structure is also the same. Therefore the denominator above is isomorphic
to HomA(m(v,i), m(w−2,j)). By Lemma 6.10 dualizing twice commutes with
tensor products. Since dualizing is exact, dualizing twice also commutes with
factoring. Therefore, and because obviously everything said so far is true for
ARR as well, and the following equalities hold:

HomA(m(v,i), m(w,j))
RR

∼=
(⊕k HomA(m(v,i), m(w−1,k)) ⊗ HomA(m(w−1,k), m(w,j))

HomA(m(v,i), m(w−2,j))

)RR

∼=
(⊕k HomA(m(v,i), m(w−1,k))

RR ⊗ HomA(m(w−1,k), m(w,j))
RR

⊕r(HomA(m(v,i), m(w−2,j))RR

)

∼=
(⊕k HomARR(m(v,i), m(w−1,k)) ⊗ HomARR(m(w−1,k), m(w,j))

HomARR(m(v,i), m(w−2,j))

)

∼= HomARR(m(v,i), m(w,j))

Here the equality between the third and the fourth line holds inductively.
Now, if one of Γ and ΓRR had a module in a position in the translation

quiver where the other does not, then the above isomorphism could not hold
on all positions which belong to the right almost split sequence of this one.

Note that the second assertion also follows directly from the isomorphism
shown above.

7.7 Theorem. Let A be a simply connected representation-finite artinian
ring. Then the dimension vectors of two non-isomorphic indecomposable A-
modules are linearly independent.
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Proof. Assume, that the dimension vectors [M ] and [N ] of two indecompos-
able A-modules M and N are linearly dependent. Without loss of generality,
M and N can be assumed to be sincere (otherwise compare them as modules
over the ring A/Tr{P ∈ A -proj : Hom(P,M) = 0}).

A sectional path (see [11]) in a translation quiver is a path (i.e. a sequence
of arrows and inverse arrows such that every arrow starts in the position
where the one before stopped) without sub-paths which connect any vertex
v to τv, τ−v or v itself.

By induction from left to right (or over i, in the notation of Construc-
tion 7.1) one can see that the dimension vectors of the indecomposable mod-
ules on some sectional path are linearly independent. Namely, the only op-
erations needed are adding the linearly independent dimension vector of a
projective module to the set of dimension vectors one already has, and re-
placing the dimension vector of a module Q by the dimension vector of τ−Q,
when all direct summands of ϑ−Q are also in out set.

Therefore this is especially true for the modules on the first possible
sectional path of maximal length. Since both N and M are sincere their
position in the Auslander-Reiten quiver is right of this sectional path. But
from this first maximal sectional path to the last one, the dimension vectors
are calculated in the same way as they are in the corresponding hereditary
algebra, just by starting with a different Z-basis. Therefore it follows from
Theorem 5.12 that M ∼= N .
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8 Bricks — classification of Auslander-Reiten

quivers of hereditary artinian rings

Bricks where introduced by Ringel [11] to understand tubes in the Auslander-
Reiten quivers of finite dimensional tame algebras over an algebraically closed
field. We will use this concept to give a necessary condition for a simply con-
nected artinian ring to be representation-finite (8.5). With this criterion, it
will be possible to give a proof of the theorem of Dowbor, Ringel and Simson
saying that a species is representation finite if and only if the corresponding
quiver is a Coxeter diagram (8.10).

8.1 Definition. Let A be an artinian ring. Following [11], an A-module b
will be called brick if its endomorphism ring is a skewfield. Two bricks b1
and b2 are called orthogonal, if Hom(b1, b2) = 0 = Hom(b2, b1).

Note that in [11] the endomorphism ring of a brick is required to be the
base field, but since there is no base field present in our context, the given
definition is the appropriate generalization.

8.2 Theorem. Let A be an artinian ring, B ⊂ A -mod a finite set of pairwise
orthogonal bricks. Let B be the full subcategory of A-modules which have a
filtration such that every factor of this filtration is isomorphic to a brick in
B. Then B is a full abelian subcategory of A -mod, and the elements of B
are representatives of the isomorphism classes of simple objects in B.

Proof. A proof can be found in [11]. Since we varied the definition of bricks
slightly and since the proof is nice and simple we will nevertheless give it.

It is obvious that B is closed under finite direct sums. Let m and n be
in B, ϕ a homomorphism m - n. We will show that the kernel of ϕ (as
morphism in A -mod) is in B. Dually cokernels of morphism in B are in B,
and therefore the same is true for images.

Let 0 = m0 < m1 < · · · < mk = m and 0 = n0 < n1 < · · · < nl = n be
filtrations such that mi/mi−1, ni/ni−1 ∈ B. We use induction on k + l. For
k + l = 1 the claim is trivially true.

In the case ϕ(m1) = 0 the following diagram, with exact rows and
columns, commutes:

m1
- - k -- k̃

m1

wwwwww
- - m

?

?

-- m̃
?

?

0
?

- n
?
========= n

?
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The first row is exact by the snake lemma. Inductively k̃ ∈ B. Therefore
also k ∈ B and the claim holds.

In case ϕ(m1) 6= 0 choose i minimal such that ϕ(m1) ⊂ ni. Then clearly
the composition m1

- - ni -- ni/ni−1 is nonzero. Therefore m1
∼= ni/ni−1

is a direct summand of ni and n has a filtration

0 < ϕ(m1) < ϕ(m1) ⊕ n1 < · · · < ϕ(m1) ⊕ ni−1 = ni < ni+1 < · · · < n

which also has only factors in B. Therefore we may assume ϕ(m1) = n1.
Then the following diagram, with exact rows and columns, commutes:

0 - k ========= k

m1

?

?

- - m
?

?

-- m̃
?

?

n1

wwwwww
- - n

?
-- ñ

?

Since the kernel k of m - n is also the kernel of the morphism m̃ - ñ
it is inductively in B.

8.3 Theorem. Let A be a representation-finite artinian ring, B a full abelian
subcategory of A -mod. Then B is a strict τ -category.

Proof. One can almost copy the proof of Theorem 3.20. It is only necessary
to restrict the various objects occurring to objects in B. Especially, one
should note that an object p is projective in B, if Ext1

A(p, b) = 0 for any brick
b ∈ B.

8.4 Theorem. Let A be a representation-finite artinian ring, B = {b1, b2}
a set of two orthogonal bricks with Ext1(b1, b1), Ext1(b1, b2), and Ext1(b2, b2)
are all zero, B as in Theorem 8.2.

Let R be the hereditary artinian ring

(
D(b1) Ext1(b2, b1)R

0 D(b2)

)
.

Then the Auslander-Reiten quiver of B and the Auslander-Reiten quiver
of R -mod are isomorphic as valued translation quivers.

Proof. Clearly the simple R-modules are

s1 =

(
D(b1)

0

)
and s2 =

(
0

D(b2)

)
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and the endomorphism skewfield of each si is isomorphic to D(bi). The
objects b1 and s1 are both projective in their categories. The other projective
R-module is

p =

(
Ext1(b2, b1)R

D(b2)

)
.

For the construction of the corresponding object in B, let E1, . . . ,Ek be a
D(b1) basis of Ext1(b2, b1), and regard ⊕Ei : b

(k)
1

- - q -- b2. We claim
that q is a projective indecomposable object in B. If that is true q especially
is the projective cover of b2. We have the exact sequences

Ext1(b2, b2)︸ ︷︷ ︸
=0

- Ext1(q, b2) - Ext1(b
(k)
1 , b2)︸ ︷︷ ︸

=0

and

Hom(b2, b1)︸ ︷︷ ︸
=0

- - Hom(q, b1) - Hom(b
(k)
1 , b1)

ξ- Ext1(b2, b1)

- Ext1(q, b1) - Ext1(b
(k)
1 , b1)︸ ︷︷ ︸

=0

.

Since ξ is an isomorphism by construction, it follows that Ext1(q, b2) = 0,
Hom(q, b1) = 0 and Ext1(q, b1) = 0. Therefore q is projective. If q were
decomposable, then it would have a direct summand isomorphic to b1, con-
tradicting Hom(q, b1) = 0.

Endomorphisms of b2 lift uniquely to ones of q, since the difference be-
tween any two possible lifts would have to factor through b

(k)
1 , therefore

End(q) ∼= D(b2) ∼= EndR(p) as skewfields. This also induces an action of

endomorphisms of b2 on b
(k)
1 by taking the kernel map. With this action,

A(b
(k)
1 )D(b2) = b1 ⊗ Hom(b1, q) as bimodules. Also Ext(b2, b1) = Hom(b

(k)
1 , b1)

as bimodules, because b
(k)
1 is the syzygy of b2 in B and there are no morphisms

factoring through q, which one would need to factor out. Therefore

Ext1(b2, b1) = Hom(b1 ⊗ Hom(b1, q), b1) = Hom(Hom(b1, q),Hom(b1, b1))

= Hom(b1, q)
L

Now Hom(b1, q) ∼= Hom(s1, p) as bimodules. Therefore the components of
the projective objects in the two Auslander-Reiten quivers are isomorphic.
Since there are only finitely many isomorphism classes of indecomposable
objects in B these components are finite, so they are the entire quivers.

8.5 Corollary. Let A be a representation-directed representation-finite ar-
tinian ring, m,n ∈ A -ind orthogonal bricks. Then Ext1

A(m,n) is a dimension
sequence bimodule.
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Proof. We may assume Ext1(m,n) 6= 0 and therefore Ext1(n,m) = 0. Then,

by Theorem 8.4, the ring
(
D(n) Ext1(m,n)R

0 D(m)

)
is representation-finite, and by

Theorem 6.7 it follows that Ext1(m,n) is a dimension sequence bimodule.

8.6 Lemma. Let S be a connected species, such that at least two of the
bimodules are not (1, 1)-dimensional. Then S is not representation-finite.

Proof. By applying the Coxeter functors (5.6) if necessary, S can be assumed

to have a subspecies of the form D1
M1,2- D2

M2,3- · · · Mn−1,n- Dn, with M1,2

and Mn−1,n not (1, 1) dimensional, which will be called S ′. If one of M1,2

and Mn−1,n is no dimension sequence bimodule the species is clearly repre-
sentation infinite. Therefore we may assume d and e to be the corresponding
dimension sequences, d 6= (1, 1, 1) 6= e.

We have the following two indecomposable S ′-representations, which are
clearly orthogonal.

b1 = D1
- 0 - · · · - 0,

b2 = 0 - M23 ⊗ · · · ⊗Mn−1,n
- · · · - Mn−1,n.

Since q = M12 ⊗ · · ·⊗Mn−1,n
- M23 ⊗ · · ·⊗Mn−1,n

- · · · - Mn−1,n

is the projective cover of b2 we have Ext1(b2, b1) ∼= (M12⊗· · ·⊗Mn−1,n)L (see
the proof of 8.4). Then by Lemma 6.10

Ext1(b2, b1)iR = (M
(i−1)R
12 ⊗ · · · ⊗M

(i−1)R
n−1,n ) for i odd, and

Ext1(b2, b1)iR = (M
(i−1)R
n−1,n ⊗ · · · ⊗M

(i−1)R
12 ) for i even.

Assume that S is representation-finite. Then so is S ′, and, by Corollary 8.5,
Ext1(b2, b1) is a dimension sequence bimodule. Let f be the corresponding
dimension sequence. Then fi ≥ diei ∀i. Therefore the neighbors of any
“1” in the sequence f are at least 4. Applying the inverse operation of
the construction of the dimension sequences in Definition 6.1, one finds a
dimension sequence with all entries larger than 1, a contradiction.

8.7 Lemma. For the species S : D
D- · · · D- D

M- E
E- · · · E- E

let S 1
2
R be the species E

E- · · · E- E
MR

- D
D- · · · D- D (this is

supposed to symbolize, that the number of “D”s in S is equal to the number
of “E”s in S 1

2
R and vice versa). Then S and S 1

2
R have isomorphic unvalued

preprojective components of Auslander-Reiten quivers. Further

HomS(mv, mw)R ∼= HomS
1
2R(mv, mw)

for preprojective vertices v and w in the Auslander-Reiten quiver.
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Proof. Copy the proof of Theorem 7.6. It is worth noting, that the species
must have this favorite shape in order to have a canonical candidate of what
to call S 1

2
R.

We will need the following technical lemma. It tells us that a certain
construction does not yield dimension sequences to often. This can be applied
in order to show that some species cannot be representation-finite in the proof
of the following theorem.

8.8 Lemma. Let d be a dimension sequence such that (dndn+1−1)n is equiv-
alent to a dimension sequence. Then the length of d is at most 5.

Proof. By Remark 6.3, any dimension sequence can successively be reduced
to (0, 0), by eliminating “1”s and decreasing their neighbors. Using this, one
can see, that every nonzero dimension sequence has a subsequence of one of
the forms (1, 1), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 3, 1), (2, 1, 2), (2, 1, 3), (2, 1, 4)
or (1, 5, 1) or one of them in the inverse order.

Let c be the dimension sequence equivalent to (dndn+1 − 1)n. If c = (0, 0)
then d = (1, 1, 1). If c contains the subsequence (1, 1) then c = (1, 1, 1) and
therefore d ∈ {(1, 2, 1, 2), (2, 1, 2, 1)}.

If c contains a subsequence (1, 2, a), a ∈ {1 . . . 3}, then d contains a sub-
sequence (2, 1, 3, a+1

3
), and therefore a = 2. If the length of d is greater than

5, then d contains a subsequence (di, 2, 1, 3, 1, di+5). Applying the inverse
construction of the definition of dimension sequences one finds a dimension
sequence with a subsequence (bi, 1, 1, bi+5−1), but there is no such dimension
sequence.

If c contains a subsequence (1, 3, 1), then d has to contain a subsequence
(1, 2, 2, 1). Reducing twice one gets a dimension sequence containing (1, 1).
This can only be (1, 1, 1), therefore d has length 5.

If c contains a subsequence (2, 1, a), a ∈ {2 . . . 4}, then d contains a sub-
sequence (3, 1, 2, a+1

2
) and therefore a = 3. Reducing twice one gets, again,

a dimension sequence which contains (1, 1).
Finally, if c contains (1, 5, 1) then there is no candidate for d at all.

8.9 Theorem. The species D
D- D

M- E is representation-finite if
and only if M is a dimension sequence bimodule such that the corresponding
dimension sequence has length at most five.

Proof. Let S be the species we are talking about, and let S ′ be the subspecies

D
M- E. Clearly M needs to be a dimension sequence bimodule, let d be the

corresponding dimension sequence. Let i be the injective S ′-representation
D - ML, and let b2 = τS′(i) and b1 = s1 = D - 0 - 0. Then b1 and
b2 are orthogonal bricks.
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Let
(

0
a
b

)
be the dimension vector of d2, i.e. we have an exact sequence

s
(a)
2

- - b2 -- s
(b)
3 with s2 = 0 - D - 0, s3 = 0 - 0 - E.

Then, as Ext1(s3, b1) = 0 and Ext2 = 0, we have

dimD(b1) Ext1(b2, b1) = dimD(b1) Ext1(s
(a)
2 , b1) = a.

By Theorem 4.5 Ext1(b2, b1)kR ∼= Hom(b1, τb2)(k−1)R.
Let pi be the position of bi in the Auslander-Reiten quiver of S, p̂2 the

position of b2 in the Auslander-Reiten quiver of S ′. Then m(S k
2
R)p2 =

m((S ′)
k
2
R)p̂2, since by Lemma 8.7 the vertices in the Auslander-Reiten quiver

of S corresponding to representations of S ′ are the same as the ones in the
Auslander-Reiten quiver of S k

2
R corresponding to representations of (S ′)

k
2
R.

Therefore

Ext1
S(b2, b1)kR ∼= HomS(b1, τb2)(k+1)R ∼= Hom

S
k
2 R(mp1 , mτp2)

R

∼= Ext1

S
k
2 R

(mp2, mp1) = Ext1

S
k
2 R

(m((S ′)
k
2
R)p̂2, mp1),

and, by the above argument, dimleft Ext1
S(b2, b1)kR = ck, if the dimension

vector of m((S ′)kR)p̂2 is
(

0
ck
?

)
. The right end of the Auslander-Reiten quiver

of S ′ is
b2 �.................................................... i

· · ·

τs3
�.................................................

(d
−2
, d

−1
) -(d−

3 , d−
2 )

-

s3

(d−
1 , d

0 )

-

with dimension vectors
(

0
d−1d−2−1

?

)
�.....................................

(
0
1
d0

)

· · ·
(

0
d−1
?

)
�...........................................

(d
−2
, d

−1
)-

(d−
3 , d−

2 )-
(

0
0
1

)

(d−
1 , d

0 )
-

The analog with permuted indices holds for (S ′)
k
2
R instead of S ′. Therefore

ck = dk−1dk−2 − 1. Now, if S is representation-finite, then (ck) is equivalent
to a dimension sequence. By Lemma 8.8, this is only possible if (dk) is a
dimension sequence of length at most five.

The converse can be verified by drawing the Auslander-Reiten quivers for
d ∈ {(1, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1, 3)}. Note that it is not necessary to try
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the different cyclic permutations by Lemma 8.7. In the following pictures
the irreducible modules are represented by their dimension vectors.

– d = (1, 1, 1):

(
1
0
0

)
�.............................................

(
0
1
0

)
�.............................................

(
0
0
1

)

(
1
1
0

)
�.............................................

-

- (
0
1
1

)

-

-

(
1
1
1

)

-

-

– d = (1, 2, 1, 2):

(
1
0
0

)
�...........................

(
0
1
0

)
�...........................

(
1
1
2

)

(
1
1
0

)
�...........................

-

-

(
1
2
2

)
�...........................

-

-

(
0
1
2

)

-

(
1
1
1

)
�...........................

(2
, 1

)
-(1, 2)-

(
0
1
1

)
�...........................

(2
, 1

) -(1, 2)-

(
0
0
1

)

(1, 2)
-

– d = (1, 2, 2, 1, 3):

(
1
0
0

)
�.............

(
0
1
0

)
�.............

(
1
1
2

)
�.............

(
0
1
1

)
�.............

(
1
1
3

)

(
1
1
0

)
�.............

-

-

(
1
2
2

)
�.............

-

-

(
1
2
3

)
�.............

-
-

(
1
2
4

)
�.............

-

-

(
0
1
3

)

-

(
1
1
1

)
�.............

(2
, 2

)-

(1, 2)-

(
1
3
3

)
�.............

(1
, 3

)-

(2, 1)-

(
2
3
6

)
�.............

(1
, 2

)-

(3, 1)-

(
0
1
2

)
�.............

(2
, 1

)-

(2, 2)-

(
0
0
1

)

(1, 3)-

This completes the proof.
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8.10 Theorem. A species is representation-finite if and only if its corre-
sponding quiver, where an edge is labeled by the length of the dimension se-
quence of the bimodule belonging to the edge, is a Coxeter diagram (see the
list in Appendix A).

Proof. By Theorems 8.6, 8.7 and 8.9 it is sufficient to show the following
points:

1. Any species with bimodules of type ◦ - ◦ (1,2,1,2)- ◦ - ◦ - ◦
is representation infinite.

2. All species of types ◦ (1,2,1,2)- ◦ - · · · - ◦ are representation-finite.

3. Species of one of the types ◦ - ◦ (1,2,1,2)- ◦ - ◦, ◦ (1,2,2,1,3)- ◦ - ◦
or ◦ (1,2,2,1,3)- ◦ - ◦ - ◦ are representation-finite.

4. All species of one of the types ◦ (1,2,2,1,3)- ◦ - ◦ - ◦ - ◦ or

◦ - ◦ (1,2,2,1,3)- ◦ - ◦ are representation infinite.

The species containing only dimension sequences (1, 1, 1) and (1, 2, 1, 2) occur
in the representation theory of finite dimensional algebras over a field. By
[2], they are representation-finite if and only if the quiver weighted with the
length of the dimension sequences is a Dynkin diagram. (This will also follow
from the proof of Theorem 9.10.)

The representation-finiteness of species of types ◦ (1,2,2,1,3)- ◦ - ◦ and

◦ (1,2,2,1,3)- ◦ - ◦ - ◦ can be verified by calculating the Auslander-Reiten
quivers (see appendix C).

To see that a species of type ◦ - ◦ (1,2,2,1,3)- ◦ - ◦ is representation
infinite consider the orthogonal bricks b1 = s1 = D1

- 0 - 0 - 0

(where D1 is the appropriate skewfield) and b2 the ◦ (1,2,2,1,3)- ◦ - ◦-
representation in the position marked ? in the Auslander-Reiten quiver.

◦�...............◦�...............◦�...............◦�...............◦

◦�...............(2
,2
)

-
(1,2)-

?�...............(1
,3
)

-
(2,1)-

◦�...............(1
,2
)

-
(3,1)-

◦�...............(2
,1
)

-
(2,2)-

◦
(1,3)-

◦�...............
--

◦�...............
--

◦�...............
--

◦�...............
--

◦
-

Then by the argument in the proof of 8.9 the sequence (dimleft Ext1(b2, b1)
kR)k

can be read off from the dimension vectors in Appendix C. It is equivalent to
(2, 3, 3, 2, 4), and therefore Ext1(b2, b1) is not a dimension sequence bimodule.
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For a species of type ◦ (1,2,2,1,3)- ◦ - ◦ - ◦ - ◦ let b1 be

the ◦ (1,2,2,1,3)- ◦ - ◦ - ◦-representation in the marked position and
b2 = s5 = 0 - 0 - 0 - 0 - D5.

◦�.....◦�.....◦�.....◦�.....◦�.....◦�.....◦�.....◦�.....◦�.....◦�.....◦�.....?�.....◦�.....◦�.....◦

◦�.....(2
,2

)-

(1
,2

)-

◦�.....(1
,3

)-

(2
,1

)-

◦�.....(1
,2

)-

(3
,1

)-

◦�.....(2
,1

)-

(2
,2

)-

◦�.....(3
,1

)-

(1
,3

)-

◦�.....(2
,2

)-

(1
,2

)-

◦�.....(1
,3

)-

(2
,1

)-

◦�.....(1
,2

)-

(3
,1

)-

◦�.....(2
,1

)-

(2
,2

)-

◦�.....(3
,1

)-

(1
,3

)-

◦�.....(2
,2

)-

(1
,2

)-

◦�.....(1
,3

)-

(2
,1

)-

◦�.....(1
,2

)-

(3
,1

)-

◦�.....(2
,1

)-

(2
,2

)-

◦
(1

,3
)-

◦�.....

--

◦�.....

--

◦�.....
--

◦�.....
--

◦�.....

--

◦�.....

--

◦�.....

--

◦�.....

--

◦�.....

--

◦�.....

--

◦�.....

--

◦�.....

--

◦�.....

--

◦�.....

--
◦

-

◦�.....

--

◦�.....

--

◦�.....

--

◦�.....
--

◦�.....
--

◦�.....

--

◦�.....

--

◦�.....

--

◦�.....

--

◦�.....

--

◦�.....

--

◦�.....

--
◦�.....

--
◦�.....

--

◦

-

Then (dimleft Ext(b2, b1)
kR)k ∼ (2, 6, 1, 6, 2) (again by Appendix C), and

therefore Ext(b2, b1) is no dimension sequence bimodule.

8.11 Remark. The preceding theorem is stated in [5], but the authors only
give a rather rough sketch of a proof and remark, that their proof is “rather
technical”. Especially, they do not say how they showed the representation
infinite species to be so.
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9 The root system corresponding to the Cox-

eter diagram

In the last section it was shown that the representation-finite species are
exactly the ones corresponding to Coxeter diagrams. For finite dimensional
algebras over a field the situation is even better: The indecomposable rep-
resentations are in bijection to the positive roots of the Coxeter diagram. It
will be show in 9.10 that this still holds for arbitrary representation-finite
species. Unfortunately, the proof is not direct but uses the classifications.

First note that the construction in 7.1 does not depend on the d(i - j)
to be dimension sequences. It is sufficient to have arbitrary sequences in a
linearly ordered ring. Here constant real sequences will be considered.

Construction 7.1 gives the Auslander-Reiten quiver of a species if s(j) −
s(i) = 1 whenever there is an arrow i - j. Therefore we will assume s to
have that property and therefore not specify it in this section.

9.1 Example. λ =
√

2. Then ◦ λ- ◦ gives the translation quiver

1 �................................................ 1 + λ

1 + λ �................................................

(λ
, λ

) -(λ, λ)
-

1

(λ, λ)
-

In a translation quiver like this, the arrows will sometimes only be labeled λ
instead of (λ, λ) for clarity.

For a real valued quiver Q, the translation quiver arising in this construc-
tion will be called T (Q). For a quiver Q with edges labeled natural numbers
≥ 2 we will call T (Q) the translation quiver which is obtained by first going
to the quiver valued 2 cos π

old value
and then doing the above construction. By

this convention the translation quiver in Example 9.1 is called T (◦ λ- ◦)

as well as T (◦ 4- ◦).

We will also need to consider the (always infinite) translation quiver T̃ (Q)
which is constructed like T (Q), but without the “cutting off of vertices with
negative length”. In the context of Example 9.1 that would be

1 �.................... 1 + λ �.................. −1 �................ −1 − λ �.................. 1

T̃ (Q) : · · ·

1 + λ �....................

(λ
, λ

) -

(λ, λ)-

1 �..................

(λ
, λ

) -

(λ, λ)-

−1 − λ �................

(λ
, λ

) -

(λ, λ)-

−1

(λ
, λ

) -(λ, λ)-
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We want to consider the quivers T (Q) and T̃ (Q) with vertices labeled an
analogon of dimension vectors instead of an analogon of lengths as well. For
the quiver from 9.1 that would be

( 1
0 ) �............................................... ( 1

λ )

( λ1 ) �...............................................

(λ
, λ

) -(λ, λ)
-

( 0
1 )

(λ, λ)
-

We will call these quivers T (Q) and T̃ (Q) as well and refer to the different
possible labels as the length or the dimension vector of a vertex.

9.2 Definition. For a complete quiver with n vertices Q with edges valued
natural numbers mij ≥ 2 (2 can and will be represented by “no arrow”,
especially if we talk about properties like “connected”) the Coxeter group G
is defined as 〈s1, . . . , sn | s2

i = 1, (sisj)
mij = 1〉.

9.3 Theorem. Let V ∼= Rn with basis {ei} and bilinear form (−,−) defined
by (ei, ei) = 1 and (ei, ej) = − cos π

mij
for i 6= j. Then G - GL(V ) :

si - σi is a monomorphism of groups, where σi is the orthogonal reflection
with respect to the hyper-plane orthogonal to ei.

Proof. See [4], Chapter V, §4 or [8], Corollary 5.4.

9.4 Theorem. The Coxeter group G is finite if and only if the corresponding
diagram is the disjoint union of Coxeter diagrams. (See Appendix A for a
list of the Coxeter diagrams).

Proof. See [4] or [8].

9.5 Definition. If G is a finite Coxeter group then

R = {r ∈ V \ {0} | x - x− 2(x, r)r is in G}
is called the root system of G.

A root r ∈ R is called positive if it is positive as a vector, i.e. if it is
nonzero and has no negative entries.

This is consistent with the definition of root systems in [8], in [4] root
systems are always required to have the property (r, s) ∈ 1

2
Z ∀r, s ∈ R.

However, most of what is said in [4] about root systems remains true.

Next we want to formally apply something similar to Construction 5.6 to
these new translation quivers. Obviously it does not make sense to search
for functors, as there are no categories present, but just for isomorphisms
between large parts of the different translation quivers.
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9.6 Construction. Let Q be a quiver (with edges labeled real or natural
numbers) and i a source of Q. Then let siQ be the quiver obtained from Q

by reversing all edges i - j. The vertices of T̃ (Q) other than (i, s(i)) can

canonically be identified with those of T̃ (siQ).

The formal definition of this identification is to sent a vertex (i, n) in the

translation quiver T̃ (Q) to (i, n) in the translation quiver T̃ (siQ). But the
idea probably gets clearer by looking at an example. For Q as in Example 9.1
this identification is as symbolized by the dashed lines below.

( 1
0 ) �....................... ( 1

λ ) �...................... ( −1
0 ) �....................

( −1
−λ
)

T̃ (Q) : · · ·

( λ1 ) �.......................

λ -λ
-

( 0
1 ) �.....................

λ -λ
-

(−λ
−1

)
�....................

λ -λ
-

( 0
−1 )

λ
-

( 1
λ ) �....................... ( 1

0 ) �.....................
( −1
−λ
)

T̃ (s1Q) : · · ·

( 0
1 ) �.......................

λ -

( λ1 ) �......................

λ -λ
-

( 0
−1 ) �....................

λ -λ
-

( −λ
−1

)

λ
-

One could also look at the identifications in the single steps of Example 5.10,
if one just looks at the translation quivers and forgets that a species is present.

The inverse construction can be applied if i is a sink, and the obtained
quiver will also be denoted by siQ. If i meets one of the conditions clearly
s2
iQ = Q.

9.7 Lemma. Let Q be a simply connected quiver with edges valued natural
numbers ≥ 3. The identification of vertices of T̃ (Q) with vertices of T̃ (siQ)
induces the map σi (i.e. orthogonal reflection with respect to the hyper-plane
orthogonal to ei) on dimension vectors.

Proof. Without loss of generality the vertex i can be assumed to be a source.
Let j be any vertex of Q.

First assume there is an edge i
mij- j. Let λ = cos π

mij
. Then the dimen-

sion vector d at position (j, s(j)) has i-th coordinate 2λ and j-th coordinate
1. Therefore the (d, ei) = 2λ + (ej, ei) = λ and the i-th coordinate of σib is
0. Clearly the other coordinates are neither affected by the identification in
9.6, nor by the reflection with respect to ei.

For j = i we find that the vector in position (i, s(i) + 1) is
∑
dk − ei and

therefore correctly mapped to
∑
σidk + ei.
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If j is not i and no neighbor of i the dimension vector in the position
(j, s(j)) is the sum of scalar multiples of the vectors at the positions (k, s(k))
for k a neighbors of i and a vector with 0 in the i-th and all k-th coordinates.
Therefore these vectors are also transformed correctly.

The remaining dimension vectors are linear combinations of dimension
vectors, for which the claim inductively holds.

9.8 Corollary. Assume Q = ◦ m1,2- · · · mn−1,n- ◦. Then the vertex (i, k) in

T̃ (Q) has dimension vector (σ1 · · ·σn)k−s(i)σ1 · · ·σi−1ei.

9.9 Corollary. If Q is a Coxeter diagram, then the dimension vectors of the
vertices of T (Q) are exactly the positive roots. Otherwise T (Q) = T̃ (Q).

9.10 Theorem. Let S be a species. Then S is representation-finite if and
only if the translation quiver coming from the quiver underlying S with edges
valued length(d) (with d the dimension sequence corresponding to the module
belonging to this edge) is. In that case the two unvalued translation quivers
are the same. In particular this induces a bijection between the isomorphism
classes of indecomposable representations and the positive roots in the root
system corresponding to this underlying quiver.

Proof. First note that this construction does not affect edges valued (0, 0) or
(1, 1, 1). Therefore, the assertion is true for all quivers which do not have an
edge with a dimension sequence of length ≥ 4. It is also true, if the quiver Q
does not represent a Coxeter diagram, as we know that then both translation
quivers are infinite.

Now let us assume that the dimension sequence of length ≥ 4 is equivalent
to (1, 2). Then, without loss of generality,

S ∧
= ◦1

- · · · - ◦n
(1,2,1,2)- ◦n+1

- · · · - ◦n+m , and

S 1
2
R ∧

= ◦1
- · · · - ◦n

(2,1,2,1)- ◦n+1
- · · · - ◦n+m .

Now the values of the length function l for the translation quiver coming from

◦1
- · · · - ◦n

√
2- ◦n+1

- · · · - ◦n+m can be transformed to
the function l1 corresponding to S and l2 corresponding to S 1

2
R by

Ψ1 : a
√

2 + b -
{

2a+ b vertex above the critical edge
a+ b vertex below the critical edge

, and

Ψ2 : a
√

2 + b -
{
a+ b vertex above the critical edge
2a+ b vertex below the critical edge

, respectively.
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See Table 2 on page 55 as an illustration of these functions. This is true for
the starting points (i, s(i)) and can easily be seen by induction for the rest
of the quiver.

Since the unvalued translation quivers corresponding to S and S 1
2
R are the

same by Lemma 8.7, and the implications 2a+b > 0∧a+b > 0 ⇒ a
√

2+b > 0
and a

√
2+b > 0 ⇒ 2a+b > 0∨a+b > 0 clearly hold, the unvalued translation

quiver coming from ◦1
- · · · - ◦n

√
2- ◦n+1

- · · · - ◦n+m is
also identical to them.

Next we assume S to have exactly two vertices. Then S ∧
= ◦ d- ◦ for a

dimension sequence d. Let l = length(d), λ = 2 cos π
l
. Let pn(x) be the n-th

polynomial in the following “generic quiver”.

1 �.......................................... x2 + x− 1

· · ·

x + 1 �..................................

x
-x

-

x3 + x2 − 2x− 1

x

-

That means p1(x) = 1, p2(x) = x+ 1 and pn(x) = xpn−1(x)−pn−2(x)∀n ≥ 3.
Then the claim is pl+1(λ) ≤ 0 and pn(λ) > 0 for 1 ≤ n ≤ l.

For q0(x) = 0, q1(x) = 1 and qn(x) = xqn−1(x) − qn−2(x)∀n ≥ 2 one
can see, by induction, that pn = qn + qn−1. The recursion formula can be
reformulated as (

qn(x)
qn+1(x)

)
=

(
0 1
−1 x

)(
qn−1(x)
qn(x)

)
.

For µk,n = 2 cos kπ
n
, 1 ≤ k < n the characteristic polynomial of

(
0 1
−1 µk,n

)
is

x(x − µk,n) + 1 = x2 − 2 cos kπ
n
x + 1 = (x − e

kπ
n
i)(x − e−

kπ
n
i). Therefore the

eigenvalues of this matrix are e
kπ
n
i and e−

kπ
n
i, and

(
0 1
−1 µk,n

)n
= 1. Therefore

(
qn(µk,n)
qn+1(µk,n)

)
=

(
0 1
−1 µk,n

)n(
q0(µk,n)
q1(µk,n)

)
=

(
0
1

)
,

and qn(µk,n) = 0. Since the degree of qn is n− 1 these are all the roots of qn.
By induction one can see that qn(2) > qn−1(2), and therefore qn(2) > 0 ∀n >
0. Since µ1,n < 2 is the largest root of qn, it follows that qn(ν) > 0 ∀ ν > µ1,n

and especially qn(λ) > 0 for l > n. Since λ = µ1,l we have ql(λ) = 0 and
ql+1(λ) = λql(λ) − ql−1(λ) < 0. Therefore the claim about p holds.

The only remaining cases are the Coxeter diagrams of types H3 and H4.
With λ = 2 cos π

5
and therefore λ2 = λ + 1 one calculates the two trans-

lation quivers (see Table 3 on page 56) and compares them to the ones in
Appendix C.
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1 �.................................... 1 · · ·

. . .

-
-

. . .
-

· · ·

n �..............................

-

-
2n+ 1

-

· · ·

n+ 1 �..........................

(2
,1) -(1,2)

-

2n+ 2

(1,2)
-

· · ·

. . .

-
-

. . .
-

· · ·Ψ1

-

n +m
-

· · ·

1 �.................................... 1 · · ·

. . .

-
-

. . .
-

· · ·

n �........................

-
- √

2 + 2n− 1

-

· · ·

n
√

2 + 1 �.............

√ 2 -
√
2
-

(2n− 1)
√

2 + 3

√
2
-

· · ·

. . .

-
-

. . .
-

· · ·Ψ2

-

n
√

2 +m

-

· · ·

1 �.................................... 1 · · ·

. . .

-
-

. . .
-

· · ·

n �..................................

-

-
2n

-

· · ·

2n+ 1 �........................

(1
,2) -(2,1)

-

2n+ 1

(2,1)
-

· · ·

. . .

-
-

. . .
-

· · ·

2n+m

-

· · ·

Table 2: Conversion of lengths in cases BCn or F4
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T
H

E
R

O
O

T
S
Y

S
T

E
M

H3 :

(
1
0
0

)
�........

(
λ
λ
0

)
�.....
(

λ+1
λ+1

λ

)
�...
(

λ
λ+1

1

)
�.....
(

1
λ
λ

)

(
λ
1
0

)
�.....

λ -λ
-

(
λ+1
λ+1

1

)
�...

λ -λ
-

(
λ+1
2λ
λ

)
�...

λ -λ
-

(
λ

λ+1
λ

)
�.....

λ -λ
-

(
0
1
1

)

λ
-

(
λ
1
1

)
�........

--

(
1
λ
0

)
�........

--

(
λ
λ
λ

)
�........

--

(
0
1
0

)
�........

--

(
0
0
1

)

-

(
1
0
0
0

)
�........

(
λ
λ
λ
0

)
�......

(
λ+1
λ+1

λ
0

)
�..
(2λ+1

2λ+1
λ+1

λ

)
�.
(2λ+1

2λ+2
λ+1

1

)
�.
(2λ+2

3λ+1
2λ+1

λ

)
�.

(
3λ+1
3λ+2
2λ+1
λ+1

)
�.
(2λ+2

3λ+2
2λ+1

λ

)
�.

(
3λ+1
3λ+2
2λ+2
λ+1

)
�.

(
2λ+2
3λ+2
2λ+1
λ+1

)
�.
(2λ+1

3λ+1
2λ+1

λ

)
�.

(
2λ+1
2λ+2
2λ+1
λ+1

)
�.
(

λ+1
2λ+1
λ+1

λ

)
�..
(

λ
λ+1
λ+1

1

)
�......

(
1
λ
λ
λ

)

(
λ
1
0
0

)
�......

λ -λ-

(
λ+1
λ+1

1
0

)
�..

λ -

λ-

(2λ+1
2λ+1
λ+1

1

)
�.

λ -

λ-

(
2λ+2
3λ+1
2λ
λ

)
�.

λ -

λ-

(3λ+1
3λ+2
2λ+1

λ

)
�.

λ -

λ-

(
3λ+2
3λ+3
2λ+2
λ+1

)
�.

λ-

λ-

(
3λ+2
4λ+2
2λ+2
λ+1

)
�.

λ -

λ-

(
3λ+2
4λ+2
3λ+1
λ+1

)
�.

λ-
λ-

(3λ+2
4λ+2
3λ+1
2λ

)
�.

λ -

λ-

(
3λ+1
3λ+3
2λ+2
λ+1

)
�.

λ -

λ-

(
2λ+2
3λ+2
2λ+2
λ+1

)
�.

λ-

λ-

(
2λ+1
3λ+1
2λ+1
λ+1

)
�.

λ -

λ-

(
λ+1
2λ+1
2λ
λ

)
�..

λ -λ-

(
λ

λ+1
λ+1

λ

)
�......

λ -λ-

(
0
1
1
1

)

λ-

H4 :

(
λ
1
1
0

)
�......

--

(
λ+1
λ+1

1
1

)
�...

--

(
λ+1
2λ
λ
0

)
�..

--

(
2λ+1
2λ+1
2λ
λ

)
�.

--

(2λ+1
2λ+2
λ+1

λ

)
�.

-

-

(2λ+1
2λ+2
λ+2

1

)
�.

-

-

(
2λ+2
3λ+1
2λ+1
λ+1

)
�.

-

-

(
2λ+1
3λ+1
2λ
λ

)
�.

--
(2λ+1

2λ+2
2λ+1

λ

)
�.

-

-

(
2λ+1
2λ+2
λ+2
λ+1

)
�.

-

-

(
λ+1
2λ+1
λ+1

1

)
�..

-

-

(
λ+1
2λ
2λ
λ

)
�...

--

(
λ

λ+1
λ
λ

)
�......

--

(
0
1
1
0

)
�.........

--

(
0
0
1
1

)

-

(
λ
1
1
1

)
�........

--

(
1
λ
0
0

)
�........

--

(
λ
λ
λ
0

)
�......

--

(
λ+1
λ+1

λ
λ

)
�...

--

(
λ

λ+1
1
0

)
�...

--

(
λ+1
λ+1
λ+1

1

)
�...

-

-
(

λ+1
2λ
λ
λ

)
�...

--

(
λ

λ+1
λ
0

)
�...

--

(
λ+1
λ+1
λ+1

λ

)
�...

-

-

(
λ

λ+1
1
1

)
�......

--

(
1
λ
λ
0

)
�........

--

(
λ
λ
λ
λ

)
�........

--

(
0
1
0
0

)
�.........

--

(
0
0
1
0

)
�.........

--

(
0
0
0
1

)

-

T
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9.11 Remark. The proof also shows the claim of Theorem 8.10 in the case
that the species only contains dimension sequences (1, 1, 1) and (1, 2, 1, 2),
which was originally only cited.
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10 Coverings of strict τ-categories

In this section, we will introduce coverings of strict τ -categories the way
Bongartz and Gabriel [3] did for what the call “Auslander categories”. We
will find out what coverings do on the module categories. This will help us
show that coverings behave nicely on almost split sequences (10.3, 10.4 and
10.6).

10.1 Definition. Let U and C be Krull-Schmidt categories. For simplic-
ity assume that U and C are skeletal, i.e. every isomorphism class contains
exactly one object.

Following [3], we call an additive functor F : U - C a covering if it
satisfies the following three conditions.

1. F is faithful

2. F(Ind(U)) = Ind(C)

3. ∀a, b ∈ Ind(C) ∀u : F(u) = b

C(a, b) =
∐

v: F(v)=a

F(U(v, u)) C(b, a) =
∐

v: F(v)=a

F(U(u, v))

In this section F is always assumed to be a covering U - C. Obviously,
it is sufficient to know F on Ind(U).

The following two functors between the module categories are induced by
F:

F
? : C -Mod - U -Mod : M - M ◦ F and

F? : U -Mod - C -Mod : M - [c -
∐

u: F(u)=c

M(u)].

As a sequence in a module category is exact if it is exact in every component,
the functors F

? and F? are exact and reflect exactness.
Finitely generated (indecomposable) projective U -modules are mapped

to finitely generated (indecomposable) projective C-modules by F?:

F?(Pu) = [c -
∐

v: F(v)=c

P v
u ] = PF (u)

Hence F? also defines two restricted functors U -Modfg
- C -Modfg and

U -mod - C -mod.
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10.2 Lemma. A morphism is in the radical of U if and only if its image is
in the radical of C.

Proof. Without loss of generality we may assume the morphism in question
to be α : u - v with u and v indecomposable.

If α /∈ JU then α is an isomorphism. Then so is F(α) and therefore
F(α) /∈ JC.

If F(α) /∈ JC, then F(α) is invertible. Let β ∈ C be such that F(α)β = 1.
By definition of a covering β can be written as

β =
∑

F(ũ)=F(u)

F(βũ) with βũ : v - ũ

Now
∑

F(ũ)=u F(αβũ) = F(1u), and therefore, because the sum in the definition
of coverings is direct, αβu = 1u and all other αβũ are zero. Similarly α has
a left inverse. Therefore α /∈ JU .

In particular, F? maps simple U -modules Su to the corresponding simple
C-modules SF(u).

10.3 Theorem. A sequence u
ν- v

µ- w in U is a right almost split

sequence if and only if its image F(u)
F(ν)- F(v)

F(µ)- F(w) is one.

Proof. By Lemma 10.2, ν ∈ JU ⇐⇒ F(ν) ∈ JC and µ ∈ JU ⇐⇒ F(µ) ∈
JC. Therefore assume that all these morphisms are in the radical. By The-

orem 3.13, u
ν- v

µ- w is a right almost split sequence if and only if

Pu-
Pν- Pv

Pµ- Pw
π-- Sw is exact. This is equivalent to the exactness

of F?(Pu)-
F?(Pν)- F?(Pv)

F?(Pµ)- F?(Pw)
F?(π)-- F?(Sw). But, since F?(Pu) = PF(u)

and F?(Su) = PS(u), this is equivalent to F(u)
F(ν)- F(v)

F(µ)- F(w) being a
right almost split sequence.

10.4 Corollary. A sequence u
ν- v

µ- w in U is an almost split sequence

if and only if F(u)
F(ν)- F(v)

F(µ)- F(w) is one.

10.5 Lemma. If C is strongly noetherian, then so is U .

Proof. Assume C is strongly noetherian, and let u ∈ Ob U and M ≤ Pu.

Then we have a short exact sequence M- ι- Pu
π-- C in U -Mod. By

exactness of F?, F?(M)-
F?(ι)- PF(u)

F?(π)-- F?(C) is exact in C -Mod, and, since
C is strongly noetherian the sequence actually lies in C -mod. Therefore
there is an epimorphism γ : Px -- F?(M) for some x ∈ Ob C. Now
γF?(ι) ∈ C(x, F(u)), and therefore γF?(ι) =

∑
F(δx̃), δx̃ : x̃ - u. Since
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∑
F?(δx̃π) =

∑
F(δx̃)F?(π) = 0, all δx̃π must be zero. Therefore, every δx̃

factors through ι, say δx̃ = γx̃ι. Now clearly
⊕

x̃:γx̃ 6=0

Px̃
(γx̃)-- M,

and therefore M is finitely generated. With Lemma 3.6 it follows that U is
strongly noetherian.

10.6 Theorem. Let C be strongly noetherian, τc- - ϑc - c a right
almost split sequence in C and u ∈ U with F(u) = c. Then u has a right
almost-split sequence τu- - ϑu - u and

F(τu- - ϑu - u) ∼= τc- - ϑc - c.

Proof. By assumption, Pτc- - Pϑc - Pc -- Sc is exact. Therefore, so
is

F
?(Pτc)- - F

?(Pϑc) - F
?(Pc) -- F

?(Sc).

Since Su is a direct summand of F
?(Sc) =

∐
F(x)=c Sx, Su has a minimal

projective resolution of length two in U -Mod, which is in U -mod as U is
strongly noetherian. Therefore u has a right almost split sequence.

F(τu- - ϑu - u) ∼= τc- - ϑc - c

follows from the uniqueness of right almost split sequences.

10.7 Lemma. Let C be strongly noetherian. If C has kernels then so does U .

Proof. Let α : u - v be a morphism in U . By assumption, we can find

κ such that k-
κ- F(u)

F(α)- F(v) is exact. Then Pk-
Pκ- PF(u)

PF(α)- PF(v)

is also exact. Applying F
? we get the following commutative diagram with

exact rows:

F
?(Pk)-

F
?(Pκ)- F

?(PF(u))
F
?(PF(α))- F

?(PF(v))

∐

F(ek)=k

Pek

wwww
- -

∐

F(eu)=F(u)

Peu

wwww
-

∐

F(ev)=F(v)

Pev

wwww

Q

K

6

- - Pu

split

6

6
Pα - Pv

split

6

6

Then the kernel morphism also splits and therefore K is projective. Also,
K is finitely generated, since it is a submodule of Pu, so K = Pl for some
l ∈ Ob U . Then l is the kernel of α.
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11 Construction of indecomposing coverings

In this section, we will restrict ourselves to indecomposing coverings, which
are coverings that do not split arrows in Auslander-Reiten quivers (see Ex-
ample 2 in Section 12 to understand this intuitive description). We will con-
struct such coverings similar to constructing coverings of topological spaces.
Especially we will find a universal covering.

Let C be a graded strict τ -category with a fixed finite grading. This
means the J (i) = J i/J i+1 are subcategories of C in such a way that the
composition satisfies J (i)(a, b)J (j)(b, c) ⊂ J (i+j)(a, c), and J n = 0 for some
n. We will further assume that C is connected (see Definition 11.2 below).

There are always coverings identifying two or more exact copies of C with
another. To exclude that (uninteresting) case, we will, from now on, assume
U to be connected.

11.1 Definition. We call a covering indecomposing, if, for any u, v ∈ Ind(U)
the following implication holds.

J (1)(u, v) 6= 0 ⇒ J (1)(F(u), F(v)) = F(J (1)(u, v))

See Section 12, Example 2 for a covering, which is not indecomposing.
However, if C = A -mod for some representation-finite artinian ring A, it will
turn out that all covers are indecomposing (Corollary 14.4).

Let W̃ be the free category (W̃ is not preadditive) with Ob W = Ind(C)

generated by the morphisms a
(a,b)- b and b

(̂a,b)- a whenever J (1)(a, b) 6= 0.

This means that W̃ consists of all paths in the Auslander-Reiten quiver of
C. Let

W = W̃/
〈
(a, b)(̂a, b) ∼ 1a, (̂a, b)(a, b) ∼ 1b, (τa, b1)(b1, a) ∼ (τa, b2)(b2, a)

〉

We call the elements of W walks in C. The relations factored out mean, that
walking “there and back again” (by the same path) is as good as not walking
at all, and that it does not affect the walk which way one takes around an
almost split sequence in the Auslander-Reiten quiver.

Fix an x ∈ Ind(C).

11.2 Definition. The strict τ -category C is called connected, if W(a, b) 6= ∅
for all a, b ∈ Ind(C).

The fundamental group of C (with respect to x) is W(x, x) and will be
called G. If the fundamental group is trivial, C is called simply connected.
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Since C is assumed to be connected, G is independent of the choice of x.

Let S be a subgroup of G. We will now construct an indecomposing
covering U of C with fundamental group S. Set

Ind(U) = {Sw | w ∈ W(x, y) for some y ∈ Ind(C)}
U(vS, wS) =

〈
ϕ1 · · ·ϕn | ϕi ∈ J (1)(ai−1, ai) and

(a0, a1) · · · (an−1, an) ∈ v−1Sw in W
〉

and define F : Ind(U) - Ind(C) by Sw is mapped to the final object of
the walk w, and F is the identity on morphisms.

11.3 Theorem. For any subgroup S of the fundamental group of C, the cov-
ering F : U - C constructed above is a covering, such that the fundamental
group of U is S.

Proof. It is clear that F is faithful and that F is surjective on objects. We have
to check, that C(a, F(u)) =

∐
v: F(v)=a F(U(v, u)). Then the other equation is

dual, and therefore it will follow that F is a covering.
It is clear that the F(U(v, u)) with F(v) = a generate C(a, F(u)). Assume∑
ϕv = 0 with ϕv ∈ U(v, u) not all zero. Since C is graded we may assume

that all the ϕv are in the same power of the radical, say ϕv ∈ J (n) ∀v and
we may assume this power n to be minimal. We may assume n > 0, since
otherwise all ϕv with v 6= u would have to be zero, leaving just maximally one
summand, which then would have to be zero by the equation. Hence the ϕv
factor through the components of ϑF(u). We will denote the indecomposable
direct summands of ϑF(u) by xi, and the components of ν and µ will be
called νi and µi respectively. They can be assumed to be chosen in such a
way, that νi and µi are in J (1). If ϕv =

∑
i ϕ̃v,i µi then

(∑

v

ϕ̃v,i

)

i

: a -
⊕

i

xi = ϑF(u)

factors through ν = ker µ. Let α be such that
∑

v ϕ̃v,i = ανi. We can

decompose α =
∑

v α̃v with α̃v ∈ U(v, τu), where τu = u ̂(xi, F(u)) ̂(τF(u), xi)
is well defined by the relations in W. By minimality of n, we know that
ϕ̃v,i = νiαv. Hence ϕv =

∑
i ϕ̃v,iµi =

∑
i αvνiµi = 0 ∀v.

Finally, by construction of U , we have GU = {w ∈ G|Sw = S} = S.

11.4 Theorem. Every indecomposing covering is obtained in the above con-
struction.
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Proof. Let F : U - C be an indecomposing covering. Then F induces a
bijection ⋃

v∈Ind(U)

WU (u, v) -
⋃

a∈Ind(C)

WC(F(u), a)

and hence an injection GU- - GC. Let Ũ be the covering obtained for
S = GU in the above construction. Define

F̃ : Ũ - U : Sw - final object of w interpreted as walk in Ind(U)

by F̃(α) = α for α ∈ J (i), i ∈ {0, 1}.
This is well defined and injective as the functor induces a bijection on the

fundamental groups. Therefore F̃ is full, faithful and dense, hence the two
coverings are isomorphic.

11.5 Corollary. The indecomposing coverings of C form a lattice which is
anti-isomorphic to the lattice of subgroups of the fundamental group.

Proof. Obviously one covering constructed as above factors through another
if and only if its fundamental group, regarded as subgroup of the fundamental
group of C, is included in the one of the other covering.

11.6 Definition. The largest indecomposing covering (i.e. the one corre-
sponding to the trivial subgroup and therefore factoring through every other
indecomposing covering) will be called the universal (indecomposing) cover-
ing.

The universal indecomposing covering is the only indecomposing covering
with U simply connected.
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12 Examples of coverings

Let us now pause for a moment and look at a few examples. We want to
get an intuitive idea of what coverings and the universal covering are in the
pictures of Auslander-Reiten quivers.

1. Let C = F [x]/(x2) -mod = FQ/(α2) -mod with Q = c
?α

. Then its
Auslander-Reiten quiver ΓC is

[P ]

S �...............................

-

S
-

Here P is the indecomposable projective injective module and S is the
simple one.

(a) Let U = FQ̃/(γβ, βγ) -mod with Q̃ = 1 2
�
γ

*
β

.

Then the corresponding Auslander-Reiten quiver is (the Pi are the
projective modules, the Si the corresponding simple ones)

ΓU :
[P2] [P1]

S1
�..............................

-

S2
�..............................

--
S1

-

Then

F : U - C :V1 V2
�
Vγ

*
Vβ

- V
?Vα
, V = V1

⊕
V2, Vα =

(
0 Vγ

Vβ 0

)

is an indecomposing covering of C.

(b) Let A∞
∞ = · · · - i − 1

αi−1- i
αi- i + 1 - · · · and let

U ⊂ FA∞
∞/(αi−1αi | i ∈ Z) -mod be the full subcategory defined

by Ob U = {V | ∑ dimF Vi < ∞}. Then the Auslander-Reiten
quiver is

ΓU :
[Pi−1] [Pi] [Pi+1]

· · · · · ·
Si−2

�.....................

-

Si−1
�........................

--

Si

--

Define F : U - C similarly to the previous example. Then F is
an indecomposing covering und U is simply connected, so F is the
universal indecomposing covering.



12 EXAMPLES OF COVERINGS 65

2. Let C be the preprojective component of FQ, where Q is the Kronecker-

Quiver 1 2
j
α

*
β

. Then the Auslander-Reiten quiver of C is

ΓC :

M1
�............................ M3

�............................ M5

· · ·

M2
�............................

(2
, 2

) -(2, 2)
-

M4
�............................

(2
, 2

) -(2, 2)
-

M6

(2, 2)
-

Let U the preprojective component F Ã3 with Ã3 =
1 - 2

3 -

-

5
- . Then

its Auslander Reiten quiver is

ΓU :

N1
1

�............................ N1
3

�............................ N1
5

N1
2

�............................

-
-

N1
4

�............................

-
-

N1
6

-

· · ·
N2

1
�............................

-

N2
3

�............................

-
-

N2
5

-
-

N2
2

�............................

-

- -
-

N2
4

�............................

-

- -
-

N2
6

--

There is a covering F : U - C with F(N j
i ) = Mi.

Since this covering splits the J (1)(Mi,Mi+1) into the two vector spaces
J (1)(N j

i , N
j
i+1)

⊕J (1)(N j
i , N

2−j
i+1 ), this is an example of a covering that

is not indecomposing. In fact, C is already simply connected, and
therefore does not admit any nontrivial indecomposing coverings.
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13 Coverings of the module categories of

representation-finite artinian rings

In this section, we will apply coverings, and especially universal coverings, to
the module categories of representation-finite artinian rings. We will see that
is possible to find, in the possibly (and probably) infinite universal covering,
subcategories, which are again the module categories of representation-finite
artinian rings.

Throughout this section we assume A to be a representation-finite ar-
tinian ring. By 3.20, this implies that A -mod is a strict τ -category.

13.1 Definition. Let C be a Krull-Schmidt category. The associated graded
category Gr(C) is defined by Ob Gr(C) = Ob C and Gr(C)(a, b) =

∐J (n)(a, b)
with the obvious composition.

For the remainder of this section, let C be Gr(A -mod) and F : U - C
a covering.

13.2 Lemma. A C-module is finitely generated if and only if it has finite
length.

Proof. It is obviously sufficient to show that Pm has finite length for any
indecompsable A-module m. Let n be another indecomposable A-module.
The number of composition factors of Pm isomorphic to the simple module
Sn is dimEnd(Pn) Hom(Pn, Pm) = dimEnd(n) Hom(n,m) which is finite, since
A -mod is a strict τ -category. Adding up these finitely many finite numbers
we find that the length of Pm is finite.

13.3 Corollary. The category C is strongly noetherian.

Let R be the ring of matrices (U(p, q))p,q, where p and q run through the
indecomposable projective objects in U . This is a ring since, for any p, the
sets {q | U(p, q) 6= 0} and {q | U(q, p) 6= 0} are finite and hence the matrices
in R are row- and column-finite.

13.4 Theorem. Let R -modfl be the category of R-modules of finite length.
Then U ≈ R -modfl.

Proof. By Lemma 10.7 and its dual U has kernels and cokernels. Since
C has sufficiently many projectives so does U . By construction of R the
full subcategories of projective objects in U and in R -modfl are equivalent.
Therefore the claim of the theorem holds.
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The ring R is locally representation-finite in the following sense: for any
indecomposable projective R-module p there are only finitely many noniso-
morphic indecomposable modules m with Hom(p,m) 6= 0. The following con-
struction works for an arbitrary locally representation-finite R with R -modfl

Krull-Schmidt:

13.5 Construction. LetR be locally representation-finite andm ∈ R -modfl.
Let P = {p ∈ R -proj | HomR(p,m) = 0} be the set of all projective modules
without homomorphisms to m. Then P contains almost all indecomposable
projective modules.

Clearly I = TrP is an ideal of R, and R/I is representation-finite because

R/I -mod = {m ∈ R -mod | no summand of the projective

cover of m is in P}.
For a set of modules M , Gen M denotes the full subcategory of the module

category, whose objects are the epimorphic images of direct sums of elements
of M .

13.6 Lemma. In R -modfl, (R/I -mod,Gen P ) defines a torsion pair (see
[11] for the definition).

Proof. For any m ∈ R -modfl, we have TrP (m)- - m -- m/Im. Further,
since the elements of P are projective, HomR(Gen P, R/I -mod) = 0.

13.7 Corollary. If R -modfl is simply connected, then so is R/I -mod (if it
is connected at all).

For a finite set of indecomposable R-modules {mi}, choose m as the
direct sum of all indecomposable modules n, such that there are nonzero
morphisms mi

- n - mj. Then the mi are obviously R/I-modules
and HomR(mi, mj) = HomR/I(mi, mj). Therefore the Auslander-Reiten-
Quiver of R -modfl is “locally isomorphic” to the Auslander-Reiten-Quiver
of a representation-finite ring. Moreover, if R is constructed as above from
the universal covering of a representation-finite artinian ring, then the mod-
ule category of the latter ring is simply connected.

13.8 Example. Let U be as in Section 12, Example 1b.

1. Let P = {Pi | i ∈ Z \ {0, 1}}. Then R/I ∼= FA2 (A2 = ◦ - ◦)
(∼= ( F F

0 F )), and the Auslander-Reiten quiver of R/I is the following:

ΓR/I -mod :

[P1]

[S0
�............................

-

S1]

-
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2. Let P = {Pi | i ∈ Z \ {0, 1, 2}}. Then R/I ∼=
(
F F 0
0 F F
0 0 F

)
, and the

Auslander-Reiten quiver of R/I is the following:

ΓR/I -mod :

[P1] [P2]

[S0
�.............................

-

S1
�.............................

-

-

S2]

-



14 REPRESENTATION-FINITE ARTINIAN RINGS 69

14 Representation-finite artinian rings

In this very brief section we will see that two important properties of simply
connected artinian rings can, by the use of coverings, be generalized to arbi-
trary representation-finite artinian rings resp. representation finite artinian
rings with a graded module category.

14.1 Theorem. Let A be a representation-finite artinian ring, m,n ∈ A -ind.
Then J (1)(m,n) is a dimension sequence bimodule.

14.2 Theorem (Auslander-Reiten formula). Let A be a representation-
finite artinian ring such that A -mod is graded, m,n ∈ A -ind. Then

Hom(n, τm)R ∼= Ext1(m,n) ∼= Hom(τ−n,m)L

14.3 Remark. Note that dualizing Hom(n, τm) makes sense, since it is a
bimodule over the heads of the endomorphism rings because the module
category is graded. This also shows that the formula, in this form, cannot be
extended to rings with a module category which cannot be graded. However,
the Auslander-Reiten quiver does not change when a category is replaced by
the corresponding graded category.

Proof of both theorems. Both theorems are actually corollaries of the same
theorems formulated for simply connected representation-finite artinian rings.
Take the universal covering of the module category modulo the trace of all
projective modules that are far enough away to have no homomorphisms to
any of the objects in question (for the Auslander-Reiten formula these are an
arbitrary preimage of one object, say m, the corresponding preimage of τm
and all preimages of n which have homomorphisms or extensions with these).
That is the module category of a representation-directed artinian ring, so the
claims are already known in that category.

14.4 Corollary (of 14.1). Let C = A -mod for a representation-finite ar-
tinian ring A. Then all coverings of C are indecomposing.

Proof. By 14.1, every J (1)(m,n) is a dimension sequence bimodule. If there
was a decomposition J (1)(m,n) = J1⊕J2, then also J (1)(m,n)iR = J iR1 ⊕J iR2 .
But a nonzero dimension sequence contains at least one “1”, contradicting
this decomposition.
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15 Gluing and ungluing of simple modules

The study of gluing and ungluing in this section serves two purposes: Firstly,
it is an alternative way to simplify Auslander-Reiten quivers and possibly
make them simply connected. Secondly, it puts a limit to the hope of finding
some simple classification of representation-finite simply-connected artinian
rings, as it provides a method of building arbitrarily large such rings.

15.1 Definition. A simple module which is neither injective nor projective
nor a direct summand of the middle term of any almost split sequence will
be called a gluing point.

15.2 Theorem (Gluing). Let A be an artinian ring with a simple projective
module SP and a simple injective module SI such that End(SP ) ∼= End(SI).
Then there is an artinian ring B with a gluing point S and a functor F :
A -ind - B -ind such that the following two points hold:

1. The functor F is bijective on objects, except F(SP ) = F(SI) = S.

2. The functor F is bijective on J (1) morphisms, except on J (1)(M,SP )
and on J (1)(SI,M).

Proof. Write A as a matrix ring A = (Hom(P,Q))P,Q projective. Let PI be the
projective cover of SI . Let

B = (Hom(P,Q)
⊕

Hom(P, SI)
⊗

End(SI)

Hom(SP , Q))P,Q6∼=SP projective

= (Hom(P,Q)
⊕

δPIP Hom(SP , Q))P,Q6∼=SP projective

and define

F : ((MP )P projective
- (MP

⊕
δPIPMSP

)P 6∼=SP projective.

Then the claim of the theorem clearly holds.

15.3 Corollary. For two simply connected representation-finite artinian rings
A1 and A2 and simple modules SI ∈ A1 -inj and SP ∈ A2 -proj such that
End(SP ) ∼= End(SI) there is a simply connected representation-finite artinian
ring B with ΓB = ΓA1

⊎
ΓA2/(SI = SP ).

This tells us that the construction in 7.1 yields finite translation quivers,
for quivers Q of arbitrary complexity, is the starting function s is chosen
adequately. See Table 4 on page 71 for an example of this effect.
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15.4 Theorem (Ungluing). Let A be an artinian ring with a gluing point
S. Then there is an artinian ring B with a simple projective module SP and
a simple injective module SI and a functor F : B -ind - A -ind such that
the following two points hold:

1. The functor F is bijective on objects, except F(SP ) = F(SI) = S.

2. The functor F is bijective on J (1) morphisms except on J (1)(M,SP )
and on J (1)(SI,M).

Proof. Write A as a matrix ring A = (Hom(P,Q))P,Q projective. Let PI be the
projective cover of S. Let

B =

(
{ϕ ∈ Hom(P,Q) | ϕ doesn’t factor through S}P,Q 0

Hom(S,Q)Q End(S)

)

Note, that {ϕ ∈ Hom(P,Q) | ϕ doesn’t factor through S} = Hom(P,Q), if
P 6∼= PI . Set

F : M =

(
(MP )P∈A -proj

MS

)
- (MP

⊕
δPIPMS)P projective

Then the claim of the theorem clearly holds.

15.5 Remark. Gluing and ungluing are trivial corollaries of Theorem 7.4,
if its conditions are satisfied.

15.6 Remark. Let A be an artinian ring, which has a gluing point. Assume
that the ring coming form A by ungluing this point is still connected. Then
ungluing can be an alternative to covering in orderer to get a new ring with
a similar representation theory to the one of A.

15.7 Example. Let A = F [x]/(x2) (see Section 12, Example 1). By ungluing
one gets Ã = FQ with Q : ◦ - ◦.

In 13.8 it was shown that one gets the same result by considering the
universal cover of the module category and then going to the quotient module
the trace of a set of projectives.
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A The Coxeter diagrams

An : ◦ 3 ◦ ◦ 3 ◦

BCn : ◦ 3 ◦ ◦ 3 ◦ 4 ◦

Dn : ◦

◦ 3 ◦ ◦ 3 ◦

3

3 ◦

E6 : ◦

◦ 3 ◦ 3 ◦

3
3 ◦ 3 ◦

E7 : ◦

◦ 3 ◦ 3 ◦

3

3 ◦ 3 ◦ 3 ◦

E8 : ◦

◦ 3 ◦ 3 ◦

3
3 ◦ 3 ◦ 3 ◦ 3 ◦

F4 : ◦ 3 ◦ 4 ◦ 3 ◦

H3 : ◦ 3 ◦ 5 ◦

H4 : ◦ 3 ◦ 3 ◦ 5 ◦

In : ◦ n ◦
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B Computer program for combinatorial ex-

periments

The following C++ program was written to produce, according to the de-
scription in 7.1, output like the Auslander-Reiten quivers given in Appendix C.
#include <s t d i o . h>
#include <s t r i n g . h>
#include <iostream>

const int MAXPROJ = 16 ;
//maximal number o f p r o j e c t i v e modules

const int MAXWIDTH = 32 ;

const char BEGINDOC[ ] = ”\\ documentc lass [ a4paper ,10 pt ]{ a r t i c l e }\n\n\\
usepackage {amsmath , amssymb , amsthm , diagrams}\n\n\\ begin {document }\n$$ \\
begin {diagram } [w=1em, h=2em, t ight , landscape ]\n” ;

const char ENDDOC[ ] = ”\\ end{diagram}$$\n\\ end{document}” ;

const char TEXCOMMAND[ ] = ” l a t ex qu ive r ” ;
const char PSCOMMAND[ ] = ” dvips qu ive r ” ;
const char DVICOMMAND[ ] = ”gv qu ive r . ps −s eascape &” ;

int numproj = 1 ;
int s [MAXPROJ] ;
int d [MAXPROJ] [MAXPROJ] [MAXWIDTH] ;

class vec tor
// makes v e c t o r s behave l i k e one would expec t
{
private :

int e [MAXPROJ] ;
public :

friend vec tor operator +(vec tor v1 , vec to r v2 ) ;
friend vec tor operator ∗( int x , vec tor v ) ;
friend vec tor uvector ( int i ) ;
friend int operator ==(vec tor v1 , vec to r v2 ) ;
friend void pr i n t ( vec tor v , FILE∗ f ) ;
friend int p o s i t i v e ( vec tor v ) ;

} ;

int MenuChoice ( ) ;
void AddProj ( ) ;
void Reverse ( ) ;
void Delay ( ) ;
void ChDimSeq ( ) ;
void DelProj ( ) ;
void Calcu la te ( ) ;

int main ( )
{

s [ 0 ] = 0 ;
Ca l cu la t e ( ) ;
system (DVICOMMAND) ;
while (1 )

{
switch (MenuChoice ( ) )

{
case 0 : return 1 ;
case 1 : AddProj ( ) ; break ;
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case 2 : Reverse ( ) ; break ;
case 3 : Delay ( ) ; break ;
case 4 : ChDimSeq ( ) ; break ;
case 5 : DelProj ( ) ; break ;
}

}
}

int MenuChoice ( )
{

int n = −1;
p r i n t f ( ”\n0 − Quit\n1 − Add tau−o rb i t \n2 − Reverse arrow\n3 − Star t tau−

o rb i t l a t e r \n4 − Change dimension sequence \n5 − Delete tau−o rb i t \n” ) ;
while ( ( n < 0) | | ( n > 5) )

{
s can f ( ”%d” , &n) ;

}
return n ;

}

void AddProj ( )
{

i f ( numproj == MAXPROJ)
{

p r i n t f ( ”Maximal number i s a l l r e ady reached .\ n” ) ;
return ;

}
int n = −1;
p r i n t f ( ”Link new tau−o rb i t to ” ) ;
while ( ( n <= 0) | | (n > numproj ) )

{
s can f ( ”%d” , &n) ;

}
n−−;
for ( int i = 0 ; i <= numproj ; i++)

d [ i ] [ numproj ] [ 0 ] = d [ numproj ] [ i ] [ 0 ] = d [ i ] [ numproj ] [ 1 ] = d [ numproj ] [ i
] [ 1 ] = 0 ;

p r i n t f ( ”Dimension sequence (0 to f i n i s h ) \n” ) ;
for ( int i = 0 ; i < MAXWIDTH; i++)

{
s can f ( ”%d” , &(d [ n ] [ numproj ] [ i ] ) ) ;
i f ( ! d [ n ] [ numproj ] [ i ] )

{
i f ( ! i )

{
d [ n ] [ numproj ] [ 0 ] = 1 ;
d [ n ] [ numproj ] [ 1 ] = 0 ;

}
i = MAXWIDTH;

}
}

s [ numproj ] = s [ n ] + 1 ;
numproj++;
Ca lcu la t e ( ) ;

}

void Reverse ( )
{

int n = −1, m = −1;
p r i n t f ( ”Reverse arrow from ” ) ;
while ( ( n <= 0) | | (n > numproj ) )

{
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s can f ( ”%d” , &n) ;
}

p r i n t f ( ” to ” ) ;
while ( (m <= 0) | | (m > numproj ) )

{
s can f ( ”%d” , &m) ;

}
n−−; m−−;
i f ( ! ( d [ n ] [m] [ 0 ] ) )

p r i n t f ( ”There i s no arrow from %d to %d . ” , n+1, m+1) ;
else

{
for ( int k = 0 ; k < MAXWIDTH; k++)

d [m] [ n ] [ k ] = d [ n ] [m] [ k ] ;
d [ n ] [m] [ 0 ] = d [ n ] [m] [ 1 ] = 0 ;
s [ n ] = s [m] + 1 ;
for ( int i = 0 ; i < numproj ; i++)

for ( int j = 0 ; j < numproj ; j++)
for ( int k = 0 ; k < numproj ; k++)

i f ( d [ j ] [ k ] [ 0 ] )
i f ( s [ k ] < s [ j ] + 1)

s [ k ] = s [ j ] + 1 ;
}

{
int h = s [ 0 ] ;
for ( int k = 0 ; k < numproj ; k++)

i f ( s [ k ] < h) h = s [ k ] ;
for ( int k = 0 ; k < numproj ; k++)

s [ k ] −= h ;
}
Calcu la te ( ) ;

}

void Delay ( )
{

int n = −1, m;
p r i n t f ( ”Move s t a r t i n g point o f ” ) ;
while ( ( n <= 0) | | ( n > numproj ) )

{
s can f ( ”%d” , &n) ;

}
n−−;
p r i n t f ( ”How f a r to the r i gh t ? ” ) ;
s can f ( ”%d” , &m) ;
for ( int k = 0 ; k < numproj ; k++)

{
i f ( d [ n ] [ k ] [ 0 ] )

i f ( s [ k ] <= s [ n ] + 2 ∗ m)
{

p r i n t f ( ” Imposs ib l e because o f %d .\n” , k ) ;
return ;

}
i f ( d [ k ] [ n ] [ 0 ] )

i f ( s [ k ] >= s [ n ] + 2 ∗ m)
{

p r i n t f ( ” Imposs ib l e because o f %d .\n” , k ) ;
return ;

}
}

s [ n ] = s [ n ] + 2 ∗ m;
{

int h = s [ 0 ] ;
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for ( int k = 0 ; k < numproj ; k++)
i f ( s [ k ] < h ) h = s [ k ] ;

for ( int k = 0 ; k < numproj ; k++)
s [ k ] −= h ;

}
Calcu la te ( ) ;

}

void ChDimSeq ( )
{

int n = −1, m = −1;
p r i n t f ( ”New dimension sequence f o r arrow from ” ) ;
while ( ( n <= 0) | | (n > numproj ) )

{
s can f ( ”%d” , &n) ;

}
p r i n t f ( ” to ” ) ;
while ( (m <= 0) | | (m > numproj ) )

{
s can f ( ”%d” , &m) ;

}
n−−; m−−;
i f ( ! ( d [ n ] [m] [ 0 ] ) )

p r i n t f ( ”There i s no arrow from %d to %d .\n” , n+1, m+1) ;
else

{
p r i n t f ( ”Dimension sequence (0 to f i n i s h ) \n” ) ;
for ( int i = 0 ; i < MAXWIDTH; i++)

{
s can f ( ”%d” , &(d [ n ] [m] [ i ] ) ) ;
i f ( ! d [ n ] [m] [ i ] )

{
i f ( ! i )

{
d [ n ] [m] [ 0 ] = 1 ;
d [ n ] [m] [ 1 ] = 0 ;

}
i = MAXWIDTH;

}
}

}
Calcu la te ( ) ;

}

void DelProj ( )
{

i f ( numproj == 1)
{

p r i n t f ( ”That would be the l a s t one .\n” ) ;
return ;

}
int n = −1;
p r i n t f ( ” Delete tau−o rb i t ” ) ;
while ( ( n <= 0) | | (n > numproj ) )

{
s can f ( ”%d” , &n) ;

}
n−−;
int c = 0 ;
for ( int i = 0 ; i < numproj ; i++)

{
i f (d [ i ] [ n ] [ 0 ] ) c++;
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i f ( d [ n ] [ i ] [ 0 ] ) c++;
}

i f ( c > 1)
{

p r i n t f ( ”That would des t roy connectedness .\ n” ) ;
return ;

}
numproj−−;
for ( int i = n ; i < numproj ; i++)

{
s [ i ] = s [ i +1] ;
for ( int k = 0 ; k <= numproj ; k++)

i f ( ! ( k == i ) )
for ( int j = 0 ; j < MAXWIDTH; j++)

{
d [ i ] [ k ] [ j ] = d [ i +1] [ k ] [ j ] ;
d [ k ] [ i ] [ j ] = d [ k ] [ i +1] [ j ] ;

}
}

{
int h = s [ 0 ] ;
for ( int k = 0 ; k < numproj ; k++)

i f ( s [ k ] < h) h = s [ k ] ;
for ( int k = 0 ; k < numproj ; k++)

s [ k ] −= h ;
}
Calcu la te ( ) ;

}

void Calcu la te ( )
{

// Ca lcu la te dimension ve c t o r s
vec tor dvec tor s [MAXPROJ] [MAXWIDTH] ;
FILE∗ f ; int w;
for ( int i = 0 ; i < numproj ; i++)

for ( int j = 0 ; j < MAXWIDTH; j++)
dvec tor s [ i ] [ j ] = uvector (−1) ;

for ( int j = 0 ; j < MAXWIDTH; j++)
for ( int i = 0 ; i < numproj ; i++)

{
i f ( j == s [ i ] )

{
w = j ;
dvec tor s [ i ] [ j ] = uvector ( i ) ;
i f ( j )

for ( int k = 0 ; k < numproj ; k++)
dvec tor s [ i ] [ j ] = dvec tor s [ i ] [ j ] + d [ k ] [ i ] [ 0 ] ∗ dvec tor s [ k ] [ j

−1] ;
}

i f ( j > s [ i ] + 1)
i f ( ! ( dvec tor s [ i ] [ j −2] == uvector (−1) ) )

{
dvec tor s [ i ] [ j ] = (−1) ∗ dvec tor s [ i ] [ j −2] ;
for ( int k = 0 ; k < numproj ; k++)

{
int h = 0 ;
for ( int l = s [ k ] ; l < j ; l++)

{
h++;
i f ( ! ( d [ i ] [ k ] [ h ] ) ) h = 0 ;

}
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dvec tor s [ i ] [ j ] = dvec tor s [ i ] [ j ] + d [ i ] [ k ] [ h ] ∗ dvec tor s [ k
] [ j −1] ;

h = 0 ;
for ( int l = s [ i ] ; l < j ; l++)

{
h++;
i f ( ! ( d [ k ] [ i ] [ h ] ) ) h = 0 ;

}
dvec tor s [ i ] [ j ] = dvec tor s [ i ] [ j ] + d [ k ] [ i ] [ h ] ∗ dvec tor s [ k

] [ j −1] ;
}

i f ( ! p o s i t i v e ( dvec tor s [ i ] [ j ] ) )
dvec tor s [ i ] [ j ] = uvector (−1) ;

else

w = j ;
}

}
// Write to f i l e qu iver . t ex
f = fopen ( ” qu ive r . tex ” , ”w” ) ;
f p r i n t f ( f , BEGINDOC) ;
for ( int i = 0 ; i < numproj ; i++)

{
for ( int j = 0 ; j <= w; j++)

{
i f ( ! ( dvec tor s [ i ] [ j ] == uvector (−1) ) )

p r i n t ( dvec tor s [ i ] [ j ] , f ) ;
i f ( ( j > 0) && ( j < w) )

i f ( ( ! ( dvec tor s [ i ] [ j −1] == uvector (−1) ) ) && ( ! ( dvec tor s [ i ] [ j +1]
== uvector (−1) ) ) )

f p r i n t f ( f , ” \\ lDot s to ” ) ;
f p r i n t f ( f , ”&&” ) ;

}
f p r i n t f ( f , ”\\\\\n&” ) ;
i f ( i < numproj − 1)

for ( int j = 0 ; j < w; j++)
{

i f ( ! ( dvec tor s [ i ] [ j ] == uvector (−1) ) )
for ( int k = i +1; k < numproj ; k++)

i f ( ! ( dvec tor s [ k ] [ j +1] == uvector (−1) ) )
{

i f ( d [ i ] [ k ] [ 0 ] )
{

int h = 0 ;
for ( int l = s [ k ] ; l <= j ; l++)

{
h++;
i f ( ! ( d [ i ] [ k ] [ h ] ) ) h = 0 ;

}
i f (d [ i ] [ k ] [ h+1])

f p r i n t f ( f , ”\\rdTo (2 , %d) ˆ{\\ s c r i p t s t y l e {(%d , %d)
}}” , 2∗( k−i ) , d [ i ] [ k ] [ h ] , d [ i ] [ k ] [ h+1]) ;

else

f p r i n t f ( f , ”\\rdTo (2 , %d) ˆ{\\ s c r i p t s t y l e {(%d , %d)
}}” , 2∗( k−i ) , d [ i ] [ k ] [ h ] , d [ i ] [ k ] [ 0 ] ) ;

}
i f ( d [ k ] [ i ] [ 0 ] )

{
int h = 0 ;
for ( int l = s [ i ] ; l <= j ; l++)

{
h++;
i f ( ! ( d [ k ] [ i ] [ h ] ) ) h = 0 ;
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}
i f ( d [ k ] [ i ] [ h+1])

f p r i n t f ( f , ”\\ rdTo (2 , %d) ˆ{\\ s c r i p t s t y l e {(%d , %d)
}}” , 2∗( k−i ) , d [ k ] [ i ] [ h ] , d [ k ] [ i ] [ h+1]) ;

else

f p r i n t f ( f , ”\\ rdTo (2 , %d) ˆ{\\ s c r i p t s t y l e {(%d , %d)
}}” , 2∗( k−i ) , d [ k ] [ i ] [ h ] , d [ k ] [ i ] [ 0 ] ) ;

}
}

i f ( ! ( dvec tor s [ i ] [ j +1] == uvector (−1) ) )
for ( int k = i +1; k < numproj ; k++)

i f ( ! ( dvec tor s [ k ] [ j ] == uvector (−1) ) )
{

i f (d [ i ] [ k ] [ 0 ] )
{

int h = 0 ;
for ( int l = s [ k ] ; l <= j ; l++)

{
h++;
i f ( ! ( d [ i ] [ k ] [ h ] ) ) h = 0 ;

}
i f ( d [ i ] [ k ] [ h+1])

f p r i n t f ( f , ”\\ ruTo (2 , %d) {\\ s c r i p t s t y l e {(%d , %d)
}}” , 2∗( k−i ) , d [ i ] [ k ] [ h ] , d [ i ] [ k ] [ h+1]) ;

else

f p r i n t f ( f , ”\\ ruTo (2 , %d) {\\ s c r i p t s t y l e {(%d , %d)
}}” , 2∗( k−i ) , d [ i ] [ k ] [ h ] , d [ i ] [ k ] [ 0 ] ) ;

}
i f (d [ k ] [ i ] [ 0 ] )

{
int h = 0 ;
for ( int l = s [ i ] ; l <= j ; l++)

{
h++;
i f ( ! ( d [ k ] [ i ] [ h ] ) ) h = 0 ;

}
i f ( d [ k ] [ i ] [ h+1])

f p r i n t f ( f , ”\\ ruTo (2 , %d) {\\ s c r i p t s t y l e {(%d , %d)
}}” , 2∗( k−i ) , d [ k ] [ i ] [ h ] , d [ k ] [ i ] [ h+1]) ;

else

f p r i n t f ( f , ”\\ ruTo (2 , %d) {\\ s c r i p t s t y l e {(%d , %d)
}}” , 2∗( k−i ) , d [ k ] [ i ] [ h ] , d [ k ] [ i ] [ 0 ] ) ;

}
}

f p r i n t f ( f , ”&&” ) ;
}

f p r i n t f ( f , ”\\\\\n” ) ;
}

f p r i n t f ( f , ENDDOC) ;
f c l o s e ( f ) ;
system (TEXCOMMAND) ;
system (PSCOMMAND) ;

}

vec tor operator +(vec tor v1 , vec to r v2 )
{

vec tor v ;
for ( int i = 0 ; i < MAXPROJ; i++) v . e [ i ] = v1 . e [ i ] + v2 . e [ i ] ;
return v ;

}

vec tor operator ∗( int x , vec tor v )
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{
for ( int i = 0 ; i < MAXPROJ; i++) v . e [ i ] ∗= x ;
return v ;

}

vec tor uvector ( int i ) // g i v e s the i−th un i t vec tor
{

vec tor v ;
for ( int j = 0 ; j < MAXPROJ; j++) v . e [ j ] = i==j ? 1 : 0 ;
return v ;

}

int operator ==(vec tor v1 , vec to r v2 )
{

int g = 1 ;
for ( int i = 0 ; i < MAXPROJ; i++)

i f ( v1 . e [ i ] != v2 . e [ i ] ) g = 0 ;
return g ;

}

void pr i n t ( vec tor v , FILE∗ f )
{

f p r i n t f ( f , ” \\ l e f t ( \\ begin { smal lmatr ix } %d” , v . e [ 0 ] ) ;
for ( int i = 1 ; i < numproj ; i++) f p r i n t f ( f , ”\\\\ %d” , v . e [ i ] ) ;
f p r i n t f ( f , ” \\end{ smal lmatr ix } \\ r i gh t ) ” ) ;

}

int po s i t i v e ( vec tor v )
{
int g = 1 ;
for ( int i = 0 ; i < MAXPROJ; i++)

i f ( v . e [ i ] < 0) g = 0 ;
return g ;

}
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C Auslander-Reiten quivers of hereditary ar-
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Translation quivers of type H3 with the cyclic permutations of the dimension
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