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Abstract. We derive a method for mutating quivers of 2-CY tilted algebras that
have loops and 2-cycles, under certain specific conditions. Further, we give the
classification of the 2-CY tilted algebras coming from standard algebraic 2-CY
triangulated categories with a finite number of indecomposables. These algebras
satisfy the setup for our method of mutation.

1. Introduction and Results

Mutation has played an important role in representation theory during the re-
cent years, especially in tilting and cluster-tilting theory. For instance, let H be a
hereditary abelian k-category over a field k, with finite dimensional Hom-spaces and
Ext1-spaces having a tilting object T . If H has no nonzero projective (or nonzero in-
jective) objects, we know that every almost complete tilting object (that is, a tilting
object where one indecomposable summand is removed) has exactly two comple-
ments (see [H2, HU, BOW2]). Thus we can always replace any indecomposable
summand of T , to obtain a new tilting object T ′. This procedure is called (tilting)
mutation in H. Unfortunately, this procedure does not work in general if H has
nonzero projectives.

Fortunately, there exists a generalization of tilting theory, where mutation is al-
ways possible: cluster-tilting theory. The approach goes as follows: Trying to model
cluster algebras from a categorical point of view, the authors in [BMRRT] intro-
duced the cluster category CH for a hereditary algebra H (see also [CCS] for the An

case), and more generally for a hereditary category H with a tilting object. The
cluster category comes equipped with a class of objects called cluster-tilting objects.
There is a mutation of cluster-tilting objects in cluster categories, and by [IY] more
generally in Hom-finite triangulated 2-Calabi-Yau categories (2-CY for short).

Associated to a tilting object T inH is the endomorphism algebra EndH(T ), called
quasi-tilted algebra ([HRS]). The mutation of tilting objects induces a mutation of
quasi-tilted algebras (see [H1]). Similarly, associated to a cluster-tilting object T in
C is the endomorphism algebra EndC(T ), called cluster-tilted algebra ([BMR2]). The
mutation of cluster-tilting objects also induces a mutation of cluster-tilted algebras,
and further a mutation of their quivers (see [BIRSm]). It coincides (see [BMR3,
BIRSc]) with the quiver mutation rule given by S. Fomin and A. Zelevinsky in [FZ]
in their theory of cluster algebras.

The main limitation of this quiver mutation rule is, that one only mutates at
vertices not lying in loops or 2-cycles. At the categorical level, there is no such
restriction. Therefore one would expect that there is a way to generalize the quiver
mutation rule to vertices lying on loops and 2-cycles. The aim of this paper is to
give a procedure for mutating quivers of 2-CY tilted algebras (the endomorphism
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rings of cluster-tilting objects in 2-CY triangulated categories) at vertices with loops
and 2-cycles, under some special conditions.

The setup is the following: We assume to have a Galois covering π : T → T
of algebraic 2-CY triangulated categories, where no cluster-tilting object in T has
loops or 2-cycles. For a (basic) cluster-tilting object T T in T having loops and/or
2-cycles, we denote by T T its lift in T . Then T T is a cluster-tilting object in T
(see Proposition 4.1).

First, we develop a procedure to replace the fibre of an indecomposable summand
of T T in T T, in order to obtain a new cluster-tilting object T T′ in T . Then we show
that π( T T′) coincides with replacing the corresponding indecomposable summand
of T T in T .

Second, we develop a corresponding procedure at the level of quivers. That is, if
we denote by Q (resp. Q) the quiver of the 2-CY tilted algebra associated to T T
(resp. T T), we give a method to mutate at any given vertex v of Q by mutating
its cover Q at the fibre π−1(v), where π :Q → Q also denotes the induced covering
morphism of quivers.

Finally, we give the classification of the 2-CY tilted algebras of finite type. We
show that the algebras in this class satisfy the setup for our method of mutation,
and organize them according to their mutation classes.

The constructions above rely heavily on a reduction technique by [IY], and a
generalized mutation rule for algebraic 2-CY triangulated categories by [P].

The paper is organized as follows.
In Section 2 we define the notation we use and recall some basic results on muta-

tion of quivers, quivers with potentials, cluster categories, coverings, Palu’s general-
ized mutation rule for algebraic 2-CY triangulated categories, and Iyama-Yoshino’s
reduction technique.

In Section 3, we develop the theory to replace, at the same time, several summands
of a cluster-tilting object in an algebraic 2-CY triangulated category. Then we derive
our rule to mutate at (minimal) oriented cycles of 2-CY tilted algebras (due to the
lengh of the calculations, they are postponed to Appendix 6). Furthermore, we
prove that mutating at cycles is equivalent to a sequence of FZ-mutations.

In Section 4 we present the method to mutate quivers of 2-CY tilted algebras
having loops and/or 2-cycles.

Finally, in Section 5 we present the classification of the 2-CY tilted algebras
coming from standard algebraic 2-CY triangulated categories with a finite number
of indecomposables. By using our mutation procedure, we are able to mutate at any
vertex in the quivers of these algebras.

2. Background

2.1. Conventions. Fix k an algebraically closed field. When we say that C is
a category, we always assume that C is k-linear additive with finite dimensional
morphism spaces.

Let C be a category. We denote by C(X, Y ) or by (X, Y ) the set of morphisms
from X to Y in C. An ideal I of C is an additive subgroup I(X, Y ) of C(X, Y ) such
that fgh ∈ I(W,Z) whenever f ∈ C(W,X), g ∈ I(X, Y ), and h ∈ C(Y, Z). For an
ideal I of C, we write C/I for the category whose objects are the objects of C and
whose morphisms are given by C/I(X, Y ) = C(X, Y )/I(X, Y ) for X, Y ∈ C/I.
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When we say that D is a subcategory of C, we always mean that D is a full
subcategory that is closed under isomorphisms, direct sums, and direct summands.
We denote by [D] the ideal of C consisting of morphisms that factor through objects
in D. Thus we can form the category C/[D].

A morphism f is said to be right minimal if it does not have a summand of the
form X0 → 0 as a complex, for a nonzero object X0 ∈ C. For a subcategory D of C,
a morphism f is called a right D-approximation of Y ∈ C if X ∈ D and

C(−, X)
(−,f)−−−→ C(−, Y )→ 0,

is an exact sequence of functors on D. We say that a right D-approximation is
minimal if it is right minimal. A subcategory D is called a contravariantly finite
subcategory of C if any Y ∈ C has a right D-approximation. Dually one defines a
left D-approximation and a covariantly finite subcategory. A contravariantly and
covariantly finite subcategory is said to be functorially finite.

Let X be a subcategory of a category T . Define X⊥ to be the subcategory of all
T ∈ T such that (X , T ) = 0. Dually, ⊥X = {T ∈ T |(T,X ) = 0}.

A k-linear autofunctor ν : T → T of a triangulated category T is called a Serre
functor of T if there is a functorial isomorphism (X, Y ) ' D(Y, νX) for any X, Y ∈
T , where D denotes the usual k-duality. If T has a Serre functor, then it is unique
(up to natural isomorphism). We say that T is n-Calabi-Yau (n-CY for short) for
an integer n ∈ Z if ν = [n].

A triangulated category is algebraic if it is triangle equivalent to the stable cate-
gory of a Frobenius exact category. All triangulated categories occuring throughout
this paper are assumed to be algebraic.

2.2. Quiver mutation. Let Q be a finite quiver with vertices 1, . . . , n having no
loops or 2-cycles. Let qi,j denote the number of arrows from i to j minus the number
of arrows from j to i in Q. The terms qi,j can be collected in a matrix called the
skew-symmetric matrix associated to Q. Fomin-Zelevinsky [FZ] defined a mutation
rule that applies to this setting. For a vertex `, we obtain the new quiver µ`(Q) as
follows: The skew-symmetric matrix (q′i,j) associated to µ`(Q) is given by

q′i,j =

{
−qi,j if i = ` or j = `,

qi,j +
|qi,`|q`,j+qi,`|q`,j |

2
otherwise.

We say thatQ and µ`(Q) are mutations of one another. Observe that µ`(µ`(Q)) ' Q.
The collection of all quivers which are iterated mutations of Q is called the mutation
class of Q.

2.3. Quivers with potentials. We follow [DWZ]. Let Q be a quiver (possibly with
loops and 2-cycles). Denote by Q0 its set of vertices (or, equivalently, the paths of
length zero) and by Qi the paths of length i in Q, where i is a positive integer. Let
kQi be the k-vector space with basis Qi and denote by kQc

i the subspace of kQi

generated by all the cycles. The complete path algebra of Q is then defined as

k̂Q =
∏
i≥0

kQi,
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that is, the completion of the path algebra kQ with respect to the ideal generated
by all the arrows. For an integer m ≥ 2 let

Potm(kQ) =
∏
i≥m

kQc
i .

An element P ∈ Pot2(kQ) is called a potential on Q. It is called reduced if P ∈
Pot3(kQ). We say that two potentials are cyclically equivalent if their difference is
in the closure of the span of all elements of the form p1 · · · pd − p2 · · · pdp1 where
p1 · · · pd is a cyclic path.

For an arrow p of Q we define ∂p : Pot2(kQ) → k̂Q as the continuous k-linear
map taking a cycle c to the sum Σc=xpyyx taken over all decompositions of the cycle
c (where x or y are possibly paths of length zero). It is clear that two cyclically
equivalent paths have the same image under ∂p. We call ∂p the cyclic derivative with
respect to p.

Let P be a potential on Q such that no two cyclically equivalent cyclic paths
appear in P . We call the pair (Q,P) a quiver with potential (or QP for short).
Associated to a QP we have a Jacobian algebra defined as

J (Q,P) = k̂Q/I(P),

where I(P) is the closure of the ideal generated by all ∂pP where p runs over all
arrows of Q.

For further details we refer the reader to [DWZ].

2.4. Cluster categories. The cluster category C of a hereditary category H was
introduced in [BMRRT]. It is defined as the orbit category D/F , where F is the
automorphism τ−1[1] with τ the Auslander Reiten translation, and [1] the shift
functor of D := Db(H). This gives an algebraic triangulated ([K]) and Krull-Schmidt
([BMRRT]) category, which is an important tool for studying the tilting theory of
H. It also models the combinatorics of the acyclic cluster algebras introduced by
Fomin and Zelevinsky (see [FZ]) in a natural way.

The objects of C are the same as in D. Given objects X and Y in D, the space
of morphisms HomC(X, Y ) is defined as

∐
i∈Z HomD(F iX, Y ). The morphisms in C

are thus induced by morphisms and extensions in H.
The category comes with a set of distinguished objects, the cluster-tilting ob-

jects. These are maximal rigid objects (maximal with respect to the number of
non-isomorphic indecomposable summands). If T is a cluster-tilting object in C,
then EndC(T ) is called a cluster-tilted algebra ([BMR2] – in that paper the authors
actually chose to look at the opposite algebra of EndC(T )).

We shall be particularly interested in the cluster-tilted algebras of finite type.
These were characterized by [BMR2] as follows: Let B = EndC(T ) be a cluster-
tilted algebra with C = CH the cluster category of some hereditary algebra H, and
T a tilting object in C. We then have that B is of finite representation type if and
only if H is of finite representation type. In this case H is the path algebra of a
Dynkin quiver Q, and the underlying graph ∆ of Q is one of {An,Dm,E6,E7,E8}
for n ≥ 1 and m ≥ 4. In this case, we say that C and B are of type ∆.

Finite type cluster-tilted algebras are (up to Morita equivalence) determined
uniquely by their quiver by [BMR1]. Furthermore, their relations are determined
by a potential, which is given by the sum of all minimal cycles of the corresponding
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quiver ([BMR1])1. Recall that a cycle is minimal if the subquiver generated by the
cycle contains only arrows of the cycle and every vertex appears only once.

2.5. Coverings. We follow [G]. However our notation varies slightly from [G], since
our categories have finite direct sums and isomorphic objects which are not equal.

A (k-linear) functor F : C → D is called a covering functor if the induced maps⊕
C(X, Y )→ D(FX,A) and

⊕
C(Y,X)→ D(A,FX)

are bijective for all X ∈ C and indecomposable A ∈ D, where in both cases the sum
runs over all isomorphism classes of objects Y such that FY ' A.

Let C be a Hom-finite Krull-Schmidt category and G a group of (k-linear) auto-
morphisms of C. Assume that the action of G on C is free (that is gX 6' X for each
X ∈ C and 1 6= g ∈ G) and locally bounded (for each pair X, Y there are only finitely
many g ∈ G such that (X, gY ) ' (g−1X, Y ) 6= 0). Then we have the following
proposition.

Proposition 2.1 ([G, 3.1]). The quotient C/G exists in the category of all Hom-
finite k-categories, and the canonical projection π : C → C/G is a covering functor.

Suppose that we have a covering functor F : C → D such that Fg = F for all
g ∈ G. Such a functor induces an isomorphism C/G ' D if and only if F is
surjective on the objects and G acts transitively on the fiber F−1(A) for each object
A ∈ D. If this is the case, we call F a Galois covering.

For further details we refer the reader to [BG, G].

2.6. Palu’s formula. In this subsection we recall the generalized mutation rule for
algebraic 2-CY triangulated categories from [P]. This formula is one of the key
ingredients in our method for mutating at loops and 2-cycles. We state the result
in the following setting: Let T be a cluster-tilting object in the algebraic 2-CY
triangulated category T . Delete the loops and oriented 2-cycles from the quiver
of (T, T ), and denote the remaining quiver by Q. Let M = (mi,j) be the skew-
symmetric matrix (see Subsection 2.2) associated to Q. Furthermore, let T ′ ∈ T
be another cluster-tilting object, and define the quiver Q′ and the skew-symmetric
matrix M ′ in a likewise manner.

We now approximate T with respect to T ′. We can write T =
⊕

j Tj with Tj
indecomposable, and decompose T ′ similarly. We have that for each j there is a
triangle (see [BMRRT, IY, KR]) of the form

Tj[−1]→
⊕
i

βi,jT
′
j →

⊕
i

αi,jT
′
i → Tj

and we define the matrix S = (si,j) by setting si,j = αi,j−βi,j. Then by [P, Theorem
12 a)] we have that

(2.1) M ′ = SMSt.

1The result in [BMR1] used a different equivalent description.
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2.7. Iyama-Yoshino’s reduction. This subsection collects the results we are going
to use from [IY], but restricted to the following setting: Let T be a 2-CY triangulated
category. Fix a functorially finite subcategory D of T satisfying (D,D[1]) = 0.
Using D, we construct the subcategory Z := ⊥D[1] and the subfactor category
U := Z/[D] of T . Then the category U is triangulated ([IY, Theorem 4.2]) and
2-CY ([IY, Theorem 4.9]). We now describe the shift functor 〈1〉 and the standard
triangles in U .

For any X ∈ Z, fix a triangle

X
αX−−→ DX

βX−→ X〈1〉 γX−→ X[1]

where αX is a left D-approximation, and define X〈1〉 by this (then βX automatically
is a right D-approximation). The action of 〈1〉 on morphisms uses commutative
diagrams of triangles like the one above (see [IY, Definition 2.5]).

LetX
a−→ Y

b−→ Z
c−→ X[1] be a triangle in T withX, Y, Z ∈ Z. Since T (Z[−1], DX) =

0 holds, there is a commutative diagram

X Y Z X[1]

X DX X〈1〉 X[1]

1X

a b c

αX βX γX

d 1X[1]

Now the standard triangles in U are the complexes of the formX
a−→ Y

b−→ Z
d−→ X〈1〉.

3. Mutating at oriented cycles

In this section we develop the theory to mutate a cluster-tilting object in several
summands (satisfying certain specific conditions) at the same time, in an algebraic
2-CY triangulated category. To achieve this, we rely heavily on Palu’s formula from
Section 2.6 and the Iyama-Yoshino construction recalled in Section 2.7.

3.1. Exchanging several summands. Throughout this section let T be an al-
gebraic 2-CY triangulated category, and fix T = Tm ⊕ Tf a cluster-tilting object
in T , where neither of the summands Tm or Tf is necessarily indecomposable. Let
D := addTf . Then clearly (D,D[1]) = 0. Define Z to be the subcategory ⊥D[1] and
U the 2-CY subfactor category Z/[D] of T . By [IY, Theorem 4.9] we have a one-
to-one correspondence between cluster-tilting objects in T having Tf as a summand
and cluster-tilting objects in U .

The main purpose of this section is to mutate the summand Tm of T , and leave
the remaining part fixed, i.e. we want to replace Tm by T ′m in such a way that
T ′ = T ′m ⊕ Tf is again a cluster-tilting object in T .

In order to do this, we follow the construction explained in Section 2.7. Consider
the following triangle in T

Tm
a−→ D

b−→ Tm〈1〉 → Tm[1]

where a (resp. b) is a minimal left (resp. right) D-approximation and 〈1〉 is the
shift functor in U . The object Tm〈1〉 ⊕ Tf is cluster-tilting in T , since Tm〈1〉 is
cluster-tilting in U .
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One could also make the dual construction, by using the following triangle

Tm[−1]→ Tm〈−1〉 b′−→ D′
a′−→ Tm

where a′ (resp. b′) is a minimal right (resp. left) D-approximation.
We want to construct the replacement T ′m symmetrically, hence we require T ′m =

Tm〈1〉 and T ′m = Tm〈−1〉. Thus we need Tm〈1〉 ' Tm〈−1〉.

Construction 3.1. Using the notation as above, assume that Tm ' Tm〈2〉 in U .
Then we define the mutation at the summand Tm of the cluster-tilting object T in
T to be

µTm(T ) = Tm〈1〉 ⊕ Tf
Remark 3.2. The assumption in the construction above is equivalent to requiring
that the algebra T (Tm, Tm)/[D] is self-injective (see [R]).

Example 3.3. Let T be the cluster category of type A9 (This category will be called
A9,1 in Definition 5.3), and T = ⊕i,jTij the cluster-tilting object in T depicted in the
figure below. We want to mutate T at Tm = ⊕jT1j . Observe that the hypothesis of
Construction 3.1 is satisfied, and we obtain Tm〈1〉 ' ⊕jT ′1j . This process is depicted
in the figure below.

T31 T21

T11

T12

T32 T22

T13

T33

T23

T ′11

T ′12

T ′13

T23

T31

Here, the subfactor category U of T , for Tf = ⊕j(T2j ⊕ T3j), is indicated in light
grey, and is easily seen to be equivalent to the cluster category of A3.

We now present the setup under which we can mutate at cycles.

Setup 3.4 (for mutation at cycles). Let T be an algebraic 2-CY triangulated cat-
egory, and fix T = Tm ⊕ Tf a cluster-tilting object in T , where neither of the
summands Tm or Tf is necessarily indecomposable. Let U be the subfactor category
of T defined by

U := ⊥(add Tf [1]) /[addTf ].

Let T ′ = T ′m ⊕ Tf , where the summand T ′m = Tm〈1〉 and the functor 〈1〉 is the
shift in U . We denote by Q the quiver of (T, T ), by Qm,f its subquiver containing
only the arrows corresponding to irreducible maps from Tm to Tf , and similarly
for Qf,m, Qm,m, and Qf,f . We denote by Q′ the quiver of (T ′, T ′) and define Q′a,b
correspondingly for all a, b ∈ {m, f}. Assume the following:

(a) No cluster-tilting object in T has loops or 2-cycles.
(b) Tm〈2〉 = Tm.
(c) The quiver Qm,m is a cycle of length l ≥ 3.
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(d) The relations of (T, T ) are given by a potential.
(e) The algebra (Tm, Tm)/[Tf ] is the path algebra of Qm,m with minimal relations

given by the paths of length l.

Under this setup, we want to mutate Q at the cycle Qm,m. In order to do this,
we apply the formula from Equation 2.1. Using the same notation as in Section 2.6
we compute as follows. Write

M =

(
A B
C D

)
−
(
A B
C D

)t
=

(
A− At B − Ct

C −Bt D −Dt

)
where Mm,m := A (resp. Mm,f := B,Mf,m := C,Mf,f := D) is the matrix of the
arrows in Qm,m (resp. Qm,f ,Qf,m,Qf,f ).

Observe that A is an l × l-matrix that looks like

A =



0 1 0 · · · 0
0 1 0 · · · 0

...
. . . . . . . . .

...
. . . 0

0 · · · 0 1
1 0 · · · 0


,

a cyclic permutation matrix. To simplify the notation, we denote all the arrows
of Qm,m by α, and set αi to be the composition of i such arrows. We decompose

C =
∑l−2

i=0Ci, where Ci corresponds to the set of arrows

Ci = {γ ∈ Qf,m | γαi+1 is zero or factors through an arrow in Qf,f ,

γαi is non-zero and does not factor through an arrow in Qf,f}.

Dually, we decompose B =
∑l−2

i=0 Bi. Now, using the fact that the relations come
from a potential, we have the following equalities.

(3.1) Ct
i = Ai+1Bi for all 0 ≤ i ≤ l − 3.

Observe that the matrix S (see Subsection 2.6) can be written as

S =

 −1 0
l−2∑
i=0

Ci
i∑

j=0

Aj 1

 .

In order to get a more symmetric result, we twist S with the permutation matrix(
A−1 0

0 1

)
, and thus we calculate

M ′ =

 −A−1 0
l−2∑
i=0

Ci
i∑

j=0

Aj 1

(A− At B − Ct

C −Bt D −Dt

) −A−1 0
l−2∑
i=0

Ci
i∑

j=0

Aj 1

t

.

Then we can prove the following result.

Theorem 3.5 (Mutation rule for cycles). Suppose that we are in the situation of
Setup 3.4. Then mutation at Qm,m has the following effect on the quiver:

(a) Arrows in Qm,m remain unchanged.
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(b) Arrows in Qf,m: Any arrow γ in Ci, with 0 ≤ i ≤ l − 3 remains unchanged.
For an arrow γ in Cl−2, we consider the path γαl−1 going from a to b. Then
replace γ by an arrow [γαl−1]t going from b to a.

(c) Arrows in Qm,f : Apply the dual process for the arrows in Qm,f .
(d) Arrows in Qf,f remain unchanged.
(e) Furthermore, add an arrow [γαiβ] for each composition γαiβ where 0 ≤ i ≤

l − 2 and γ ∈ Qf,m, α ∈ Qm,m, β ∈ Qm,f such that
(i) neither γαi nor αiβ is zero or factors through an arrow in Qf,f ,

(ii) γ ∈ Cl−2 or β ∈ Bl−2, i.e. at least one of γ or β has no extra relations
with the cycle of Qm,m.

(f) Finally, remove any loops or 2-cycles from the mutated quiver.

Proof. The calculations are straight-forward but somewhat lengthy. See Appendix 6.
�

Example 3.6. Let T in T be as in Example 3.3. We depict the quiver Q of (T, T )
to the left in the diagram below:

Q

11 12

13

23 33

22

3221

31

α1

α2α3

β1γ1

δ1 β2

γ2δ2

β3

γ3

δ3

µ{11,12,13}

Q′

11 12

13

31 22

33

2132

23

α1

α2α3

[δα2]t[δαβ]

[α2β]t [δα2]t

[δαβ][α2β]t

[δα2]t

[δαβ]

[α2β]t

where the potential is given by the sum of all the minimal cycles. It is clear that
Setup 3.4 is satisfied. We want to mutate this quiver at the minimal cycle spanned
by the set of vertices {11, 12, 13}. Using the same notation as in the mutation rule,
we observe that we have decompositions C = C0 + C1 and B = B0 + B1 since the
length of the minimal α-cycle is 3. It is easy to see that C0 and B0 are empty,
B1 = {βi | i = 1, 2, 3} and C1 = {δi | i = 1, 2, 3}. We are ready to apply the rule:

(a) Q′m,m. The α-arrows stay the same.

(b) Q′m,f . For each path α2β we add an arrow [α2β]t going in the opposite
direction.

(c) Q′f,m. For each path δα2 we add an arrow [δα2]t going in the opposite direc-
tion.

(d) Q′f,f . The γ-arrows stay the same.
(e) Furthermore, we add all the compositions [δβ] and [δαβ]. Then we end up

with a quiver like in the figure shown below. Here we have indicated in which
step the arrows have been added.
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11 12

13

23 33

22

3221

31 (a)

(a)(a)

(d)(e) (e)(d)

(d)

(e)

(b)

(b)

(b)(c)

(c)

(c)

(e)

(e) (e)

(f) Now eliminate all loops and 2-cycles.

Then one obtains the quiver Q′ to the right in the figure at the beginning of the
example, which is the quiver of the endomorphism ring of µ{11,12,13}(T ) as one can
also see from the AR-quiver of T in Example 3.3.

Example 3.7. Consider the canonical cluster-tilting object T from the stable mod-
ule category of the preprojective algebra of A6. The quiver Q of (T, T ) is depicted
to the left in the figure below.

Q

51

52

53

31

32 33

41

42

4321

22

2311

12

13

µ{51,52,53}

Q′

51

52

53

31

32 33

42

43

4123

21

22

13 11

12

where the potential is given by the sum of all the minimal triangles. It is not hard
to see that Setup 3.4 is satisfied (to check the no loops and 2-cycles condition see
[GLS, BIRSc]). Let Qm,m = {5→ 5}, Qf,m = {3→ 5, 4→ 5}, Qm,f = {5→ 2, 5→
3} and Qf,f the rest. We want to mutate at the minimal cycle of length 3 given by
Qm,m. Decompose C = C0 + C1 where C0 = {3→ 5} and C1 = {4→ 5}. Similarly,
B = B0 +B1 where B0 = {5→ 3} and B1 = {5→ 2}. We apply the mutation rule
for cycles:

(a) 5→ 5. These arrows stay the same.
(b) 5→ {3, 2}. For each path 5→ 5→ 2 we add an arrow [2→ 5]. For the paths

5 → 5 → 3, we do not add arrows [3 → 5] since 5 → 5 → 3 = 5 → 2 → 3,
factoring through the arrows 2→ 3 in Qf,f .
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(c) {4, 3} → 5. For each path 4→ 5→ 5 we add an arrow [5→ 4]. For the paths
3 → 5 → 5, we do not add arrows [5 → 3] since 3 → 5 → 5 = 3 → 4 → 5,
factoring through the arrows 3→ 4 in Qf,f .

(d) The remaining arrows stay the same.
(e) Furthermore, we add arrows for all the compositions [3→ 5→ 2], [4→ 5→

3], [4→ 5→ 2] and [4→ 5→ 5→ 2].
(f) Now eliminate all loops and 2-cycles.

Then one obtains the quiver Q′ to the right in the figure above.

3.2. Mutation rule at cycles vs. FZ-mutation. In both examples above one
can check that the result of mutating in a cycle can also be obtained by a sequence
of FZ-mutations in the vertices of the cycle (using vertices multiple times, not just
every vertex once). In this section we will show that this is no coincidence, but that
there always exists a sequence of FZ-mutations that corresponds to our mutation
rule at cycles.

Let the cluster-tilting objects T = Tm⊕Tf and T ′ = Tm〈1〉⊕Tf in T , the category
U , and the quivers Q and Q′ be as in Setup 3.4. Assume the conditions of Setup 3.4
hold. Using the same notation, we observe that the cluster-tilting object Tm in U
has Γ := (Tm, Tm)/[addTf ] as endomorphism ring, which is a cluster-tilted algebra
of type Dl. It is not hard to find a sequence of mutations taking us from QΓ, the
quiver of Γ, to a hereditary quiver QH . Then, by using [KR, Main Theorem], we see
that the 2-CY category U is triangle equivalent to the cluster category of Dl. Using
the methods developed in [BOW1], we observe that we can choose Tm as indicated
in dark gray in the Auslander-Reiten quiver of U (where l is assumed to be odd)
shown below. Here Tm〈1〉 is indicated in lighter gray.

· · ·

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

...
...

Since U is mutation connected, we can always find a sequence of (cluster-tilting)
mutations taking us from Tm to Tm〈1〉. Applying this sequence of mutations in T ,
we obtain a sequence of (cluster-tilting) mutations taking us from T to T ′. Since T
has no loops or 2-cycles by assumption, cluster-tilting mutation corresponds to FZ-
mutation at the level of quivers (see [BIRSc]). Therefore, applying the corresponding
sequence of FZ-mutations to the quiver Q, we obtain the quiver Q′. Hence we have
proved the following result.

Theorem 3.8. Let T = Tm ⊕ Tf be a cluster tilting object in T , such that the
conditions of Setup 3.4 hold. Let T ′ = Tm〈1〉 ⊕ Tf be the cluster-tilting object
obtained after mutating T at Tm as in Construction 3.1. Denote by Q (resp. Q′) the
quiver of the 2-CY tilted algebra (T, T ) (resp. (T ′, T ′)). Let Qm,m denote the quiver
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of (Tm, Tm). Then there exists a sequence of FZ-mutations taking us from Q to Q′,
which correspond to mutating at Qm,m as in Theorem 3.5.

Corollary 3.9. When mutating in cycles in algebraic 2-CY triangulated categories,
the cluster tilting objects remain in the same mutation component.

In view of Theorem 3.8 and [BIRSm, Proposition 5.1], we have the following
improvement of Setup 3.4. Suppose that the 2-CY tilted algebra (T, T ) is isomorphic
to J (Q,P), the Jacobian algebra of a QP (Q,P) (see Section 2.3), where the quiver
of (Q,P) has no loops or 2-cycles. Let µvr · · ·µv1 be the sequence of FZ-mutations
at the vertices v1, . . . , vr taking us from Q1 := Q, to Qr := Q′. Then we can relax
condition (a) of Setup 3.4 to the following.

(a’) No 2-cycles start in vertex vi+1 in the quiver of µvi · · ·µv1(Q1,P1) for 1 ≤ i ≤
r − 1. Here the mutations are of quivers with potential, where (Q1,P1) :=
(Q,P) and (Qi+1,Pi+1) := µvi(Qi,Pi) for 1 ≤ i ≤ r − 1.

This assures that no loops or 2-cycles appear at each step, and that

(µvi · · ·µv1(T ), µvi · · ·µv1(T )) ' J (Qi+1,Pi+1) for 1 ≤ i ≤ r − 1.

4. Mutating at loops and 2-cycles

In this section, we build on the theory of Section 3, in order to develop a method
to mutate the quivers of cluster-tilting objects in algebraic 2-CY triangulated cate-
gories, having loops and 2-cycles. This is done under certain restrictions, as we now
explain.

Let T be an algebraic 2-CY triangulated category such that no cluster-tilting
object in T has loops and/or 2-cycles. Suppose that π : T → T is a Galois covering
of algebraic triangulated categories (then T automatically also is 2-CY). Denote by
G the group of k-linear automorphisms of T such that T = T /G. For an object
X ∈ T , we denote by X = π(X) ∈ T . For an object Y ∈ T we denote by
←−
Y = π−1(Y ) ∈ T .

We now show that we can lift cluster-tilting objects from T to T .

Proposition 4.1. Let T T be a cluster-tilting object in T . The orbit T T = T
←−
T is

a cluster-tilting object in T .

Proof. Using the bijections of the Hom-spaces between T and T given by π, we have
that

0 = Ext1
T ( T T, T T) ' Ext1

T ( T T, T T)

and thus T T has no self extensions. (Here the first equality holds since T T is just
the sum of order of the covering many copies of T T.) Now assume that for X in
T , we have that Ext1

T ( T T, X) = 0. This implies that Ext1
T ( T T, X) = 0, and thus

X is in add T T. But this just means that
←−
X is in add T T. In particular, X is in

add T T. �

For the rest of the section, fix a basic cluster-tilting object T T = T Tm⊕ T Tf

in T , where the summand T Tm is indecomposable. Define D := add T Tf and

Z :=
⊥D[1]. Then the subfactor category U := Z/[D] is a 2-CY triangulated

category (see Subsection 2.7).
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Write T T = T Tm⊕ T Tf for the lift of T T in T , such that T Tm = T
←−
Tm and

T Tf = T
←−
Tf . As in the previous paragraph, let D := add T Tf and define Z to be

the subcategory ⊥D[1] of T . Again, we have that the subfactor category U := Z/[D]
forms a 2-CY triangulated category. Then we have the following.

Proposition 4.2. The covering functor π : T → T induces a triangle functor
π̃ :U → U that is also a Galois covering.

Proof. First, observe that π sends D onto D and Z onto Z. Thus we have a well
defined functor π̃ : U → U . Second, note that π sends D-approximations to D-

approximations, since T Tf = T
←−
T f . Thus we have that π̃ ◦ 〈1〉U = 〈1〉U ◦ π̃, where

〈1〉U and 〈1〉U denote the shift functors in the categories U and U , respectively.
Now to see that π̃ is a triangle functor, let X → Y → Z → X〈1〉 be a standard

triangle in U . This triangle comes from the following commutative diagram of
triangles in T

X Y Z X[1]

X DX X〈1〉 X[1]

1X

αX βX

1X[1]

where the morphism αX (resp. βX) is a left (resp. right) D-approximation (see
Subsection 2.7). This diagram descends via π to the following commutative diagram
of triangles in U

X Y Z X[1]

X DX X〈1〉 X[1]

1X

π(αX) π(βX)

where the morphism π(αX) (resp. π(βX)) is a left (resp. right) D-approximation.
Hence we obtain a standard triangle X → Y → Z → X〈1〉 in U . It is not difficult
to see that G acts freely and transitively on the fibers of π̃. Thus π̃ is a Galois
covering. �

We now define the setup under which we can mutate at loops and 2-cyles.

Setup 4.3 (for mutation at loops and 2-cycles). Let π : T → T be a Galois covering
of algebraic 2-CY triangulated categories. Assume we have a (basic) cluster-tilting
object T T = T Tm⊕ T Tf in T , where the summand T Tm is indecomposable. We

write T Tm = T
←−
Tm, T Tf = T

←−
Tf , and T T = T

←−
T (= T Tm⊕ T Tf ). If we denote

by Q and Q the quivers of ( T T, T T) and ( T T, T T), respectively, then the covering
functor π : T → T induces a covering of quivers, which we also denote by π :Q→ Q.
Note that Qm,m, the quiver of ( T Tm, T Tm)/[ T Tf ], now is a single vertex, possibly

with a loop and/or 2-cycles adjacent to this vertex in Q.
We assume the category T and the cluster-tilting objects T T = T Tm⊕ T Tf and

T T′ = T Tm〈1〉U ⊕ T Tf in T , are as in Setup 3.4.
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Remark 4.4. Observe that under the setup above, the quiver Qm,m is a (possibly
disjoint union of ) cycle(s) of length l ≥ 3 in Q with minimal relations given by the
paths of length l.

Remark 4.5. In the setup above, note that the fact that the endomorphism ring of

T T is given by a quiver with potential leads to the endomorphism ring of T T also
being given by a quiver with potential, provided the characteristic of k does not
divide order of the covering.

If the characteristic of k divides the order of the covering it can happen that some
cyclic derivatives for the candidate potential on Q vanish, even though there should
be relations.

Consider for instance the quiver with just one vertex, and a loop α attached to
it, subject to the relation αn = 0. If the characteristic of k does not divide n + 1
then this relation is given by the potential αn+1, but if the characteristic of k divides
n+ 1 then this potential does not give rise to any relations.

We now present the main theorem of this section.

Theorem 4.6 (Mutation at loops and 2-cycles). Let π : T → T be a Galois covering
of algebraic 2-CY triangulated categories. Let T T = T Tm⊕ T Tf be a (basic) cluster-

tilting object in T with T Tm indecomposable and denote by T T′m the other comple-
ment of the almost complete cluster-tilting object T Tf . Write T T = T Tm⊕ T Tf

for the lift of T T to T via π. Suppose that the conditions of Setup 4.3 are satisfied.
Then, using the same notation as in Setup 4.3, we have that T T′ = T T′m⊕ T Tf =

π( T T′). Furthermore, if Q denotes the quiver of ( T T′, T T′), then Q
′
= π(Q′).

Proof. From the proof of Proposition 4.2, we see that mutating in T corresponds to
mutating in T as in Construction 3.1.

If the quiver of T T has loops or 2-cycles, these disappear when lifting to T T since
by assumption cluster-tilting objects in T have no loops or 2-cycles. This allows
us to mutate via the cover as follows: We mutate Q at Qm,m using Theorem 3.5 to

obtain Q′. Then Q
′
, the quiver of T T′, is given by π(Q′). �

Remark 4.7. Consider the case when Qm,m does not have a loop, but there are

possibly 2-cycles adjacent to the only vertex in Qm,m. Then it is not difficult to see
that the subfactor category U of T is just the product of cluster categories of type
A1. This means that the quiver Qm,m is a disjoint union of isolated vertices, and
FZ-quiver mutation at all the vertices in Qm,m (in any order) in the cover gives the
correct answer. Then project back using π.

Remark 4.8. When T is a cluster category, we know that the relations of any cluster-
tilted algebra are determined by its quiver ([BIRSm, 5.11]). In this case, the relations
of the 2-CY tilted algebra ( T T, T T) are uniquely determined by the cover.

We now present an example that illustrates the procedure above.

Example 4.9. Let T = D6,1 be the cluster category of D6 and T = D6,3 the covering
of order 3 (see the diagram below – also see Definition 5.3 for notation). It is not
hard to see that we have a Galois covering π : T → T . Let T T = T1 ⊕ T2 be the
cluster-tilting object in T and denote its lift to T by T T = ⊕i,jTij for 1 ≤ i ≤ 2
and 1 ≤ j ≤ 3, both shown in the figure below. Similarly, let T T′ = T ′1 ⊕ T2 be the
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cluster-tilting object obtained by replacing T1 in T T. We can also obtain T T′ by
replacing ⊕3

j=1T1j by ⊕3
j=1T

′
1j

in T T and then projecting to T via π, as illustrated
in the figure below.

T

T11

T ′11

T12

T ′12

T13

T ′13

T22 T23 T21

π

T

T1

T ′1

T2

In the figure above, the subfactor categories U and U are presented in light grey.
They correspond to the 2-CY triangulated categories A3,1 and A3,3, respectively (see
Definition 5.3). At the level of quivers, we obtain the following picture:

Q : 11

2112

22

13 23

α1

α2

α3

β1

β2 β3

γ1γ2

γ3

: Q1 2α
β

γ

µ{11,12,13}

π

µ1

Q′ : 1′1

211′2

22

1′3 23

α1

α2

α3

β1

β2 β3

γ1γ2

γ3

: Q
′
= π(Q′)1′ 2α

β

γπ

Here, Q and Q denote the quivers of the endomorphism rings of T T and T T respec-
tively. Applying the mutation rule for cycles to Q we obtain the quiver Q′. Then

mutating Q at vertex 1 we obtain Q
′
, which is isomorphic to the quiver given by

π(Q′). The relations on Q (resp. Q
′
) are determined by the potential of Q (resp.

Q′).

Example 4.10. Let T = A9,1 be the cluster category of A9 and T = A9,3 the
covering of order 3 (see the diagram below – also see Definition 5.3 for notation).
Then we have a Galois covering π : T → T of 2-CY triangulated categories. Let

T T = T1 ⊕ T2 ⊕ T3 be the cluster-tilting object in T shown below. We denote by

T T′ = T ′1 ⊕ T2 ⊕ T3 the resulting cluster-tilting object obtained by replacing T1 in
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T T.

T3 T2

T1

T3T2

T ′1

The lift T T (resp. T T′) of T T (resp. T T′) to T is shown in Example 3.3. The
mutation of Q, the quiver of T T, at the cycle {11, 12, 13} in order to obtain Q′, the
quiver of T T′, is illustrated in Example 3.6. Then after mutating Q at vertex 1 we

obtain Q
′
, which is isomorphic to the quiver given by π(Q′). Therefore we have the

following commutative diagram.

Q

α

1

2 3

β

γ

δ

µ1

π ◦µ{11,12,13} ◦ π
−1

Q
′
= π(Q′)

α

1

32

[δα2]t

[δαβ]

[α2β]t

The relations on Q (resp. Q
′
) are determined by the potential of Q (resp. Q′).

5. 2 CY-tilted algebras of finite type

In this section, we give a description of the mutation classes of the 2-CY tilted
algebras (which are not cluster-tilted) coming from standard algebraic 2-CY trian-
gulated categories with a finite number of indecomposables. (A category is called
standard if it is equivalent to the mesh category of its Auslander-Reiten quiver.) We
will see that these types of algebras always satisfy our setup for mutating at loops.
Thus by using our mutation rule developed in the previous section, we will be able
to mutate at any vertex.

Let k be an algebraically closed field. The 2-CY tilted algebras of finite type
appear as endomorphism rings of cluster-tilting objects in k-linear 2-CY triangulated
categories T with a finite number of indecomposables. In [BIKR] the authors prove
that the existence of cluster-tilting objects in these categories follows from the shape
of their AR-quiver. These shapes were described in [A, XZ].

First, let us fix a numbering and an orientation of the simply-laced Dynkin quivers.
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An : 1 2 3 · · · n− 1 n

Dn : 1 2 3 · · · n− 2

n− 1

n

En : 1 2 3

4

5 · · · n

For the definition of a translation quiver, we refer the reader to [ARS, Chap-
ter VII].

Definition 5.1. For a Dynkin quiver ∆ we define the following automorphisms of
the translation quiver (Z∆, τ) (in all cases S is the combinatorial description of the
shift functor):

(a) If ∆ = An, define S(i, p) = (i+ p, n+ 1− p) where i ∈ Z and p is a vertex of
An. Moreover, define

φ =

{
τ

n
2 S if n is even,

τ
n+1
2 S if n is odd.

Observe that for n even φ2 = τ−1, and for n odd φ2 = 1.
(b) If ∆ = Dn, define φ to be the automorphism exchanging vertices n and n−1,

and let

S =

{
τ−n+1 if n is even,

τ−n+1φ if n is odd.

(c) If ∆ = E8 then S = τ−15.

The following theorem has been adapted to our setup.

Theorem 5.2 ([BIKR, Theorem 8.2 (1)]). Let T be a 2-CY triangulated category,
not a cluster category, with a finite number of indecomposables. Then T has a
cluster-tilting object if and only if the AR-quiver of T is Z∆/g for a Dynkin diagram
∆ and g ∈ AutZ∆ in the table below.

∆ AutZ∆ g Restrictions

Z φ
n+3
3 n even

An
Z× Z/2Z τ

n+3
6 φ n odd

3|n

Z× Z/2Z τmφm n even
Dn

Z× Z/2Z τmφ n odd
m|n, n > 4

D4 Z× S3 τmσ m|4, σ 4
m = 1, (m,σ) 6= (1, 1)

E8 Z τ 8

Here S3 is the permutation group of three elements and φ is the automorphism of
Z∆ as in Definition 5.1.

Let F be the automorphism τ−1S of Z∆ and let n be a positive integer as in
Theorem 5.2. Then we note that in the case An (resp. Dn, E8) we have g3 = F
(resp. g

n
m = F , g2 = F ). Then we define the following.
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Definition 5.3. Let ` and n be two positive integers such that ` divides n. We
denote by An,` (resp. Dn,` and En,`) the standard algebraic 2-CY triangulated cat-
egory having AR-quiver ZAn/g (resp. ZDn/g and ZEn/g), where in each case we
have that g` = F .

Remark 5.4. This definition only makes sense if we ask our triangulated category to
be standard and algebraic. By [A, 7.0.5], it is known that these categories are unique
up to a triangle isomorphism. With the above definitions, the cluster categories of
type An, Dn and E8 are denoted by An,1, Dn,1 and E8,1 respectively.

We can now give a simpler reformulation of Theorem 5.2 for the standard algebraic
case.

Theorem 5.5. Let T be a standard algebraic 2-CY triangulated category, not a
cluster category, with a finite number of indecomposables. Then T has a cluster-
tilting object if and only if T is either the category A3n,3 for some n ≥ 1, the
category Dn`,` for n and ` such that n` ≥ 4, or the category E8,2.

Proof. This is a direct consequence of [A, 7.0.5] and Theorem 5.2. �

The following definition is useful for the description of the 2-CY tilted algebras
of finite type. It was first introduced in [V] in order to describe the cluster-tilted
algebras of type D.

Definition 5.6. Let Q be the quiver of a cluster-tilted algebra of type A. A vertex
of Q is called a connecting vertex if

(a) there are at most two arrows adjacent to it, and
(b) whenever there are two arrows adjacent to it, the vertex is on a 3-cycle.

We are now ready to present the main theorem of this section.

Theorem 5.7. Let T be a cluster-tilting object in a standard algebraic 2-CY trian-
gulated category T of finite type, not a cluster category. Then EndT (T ) is depicted
in Figure 5.1.

Proof. Observe that we have a covering functor π : C∆ → T , where C∆ is a cluster
category of Dynkin type ∆. We proceed by finding the cluster-tilted algebras in C∆

which are a cover of the 2-CY tilted algebras in T . By Theorem 5.5 we have three
cases:

Case T = A3n,3. Using the geometric description of the cluster category of type
A, we know that cluster-tilting objects correspond to triangulations of a regular
(3n + 3)-gon (see [CCS, I]). Observe that the automorphism g corresponds to a
rotation by 2π/3. We want to find all the triangulations of the polygon invariant
under g.

Assume we are given such a g-invariant triangulation. Let d be the longest di-
agonal which is part of the triangulation. If it covers an angle of more than 2π/3
then the diagonals d and g · d intersect in their interior, a contradiction. If all di-
agonals cover an angle of less than 2π/3 then the shape which contains the center
of the polygon cannot be a triangle, also a contradiction. Thus d covers an angle
of exactly 2π/3, and d, g · d, and g2 · d form a regular triangle in the center of the
regular (3n+ 3)-gon.
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A3n,3)
?

α
P = α3 + P?

Dn`,`) ? ?

?

?

α1α2

αq−1

αq

β2

γ2 β1

γ1

βq

γq

βq−1

γq−1

P = (α1α2 · · ·αq)` +
∑

{i|? present}
αiβiγi + P?

for n` ≥ 4

E8,2) a)

P = (αβ)2

α

β

b)

P = (αβ)2 + αγδ

α

β

γδ

c)

P = (αγδ)2

α

γδ
d)

P = (αβ)2 + αγδ

α

β

γδ

e)

P = (αβ)2 + ρ(γβ + δε)

α

β
γ

δ

ρ
ε

f)

P = (αβ)2 + ρ(αγ + εδ)

α

β

γ

δ

ρ
ε

g)

P = (αβ)2 + αγδε

α

β

γ

δ

ε

Figure 5.1. These are the 2-CY tilted algebras of finite type that are
not cluster-tilted, organized by their mutation class. The relations are
given by the potentials P , unless (see Remark 4.5) the characteristic
is 3 in case A3n,3, 2 in case E8,2, or divides ` in case Dn`,` – in these
cases the relations are similar but do not come from the potential.
For the cases A3n,3 and Dn`,`, the vertex ? is a connecting vertex (see
Definition 5.6) where a cluster-tilted algebra of type A is glued, and
the term P? corresponds to the sum of the potentials of all cluster-
tilted algebras of type A attached at ?. In case Dn`,`, the vertices
? may or may not be present, and thus, the corresponding β and γ
arrows disappear.
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Next, we note that the remaining diagonals correspond to three identical trian-
gulations of an (n + 2)-gon, that is, a cluster-tilting object in the cluster category
of type An−1.

Now projecting back to T , we obtain a 2-CY tilted algebra with a loop α corre-
sponding to the orbit of the diagonal d, attached to a cluster-tilted algebra of type
A. Since the orbit of the diagonal d is a triangle, the loop satisfies the relation
α2 = 0, thus obtaining the quiver with relations depicted in Figure 5.1 A3n,n).

Case T = Dn`,`. We can assume n` ≥ 4. In this case, cluster-tilting objects in the
cluster category of Dn` correspond to (tagged) triangulations of a punctured n`-gon
(see [S]). Here the automorphism g corresponds to a rotation by 2π/` composed
with φn where φ is the automorphism that exchanges the tagged diagonals with
non-tagged diagonals.

Assume we are given a g-invariant triangulation of the punctured n`-gon. By
definition there is at least one diagonal connecting the puncture to the polygon. It
follows that there are at least ` vertices of the polygon connected to the puncture
by diagonals (the ` g-translates of any given one).

It follows that no vertex is connected to the puncture by more than one diagonal
(hence we may ignore the question if edges are tagged or not).

Now consider all diagonals connecting vertices of the polygon to the puncture.
Clearly they form a cycle of length q` in the quiver of the cluster tilted algebra of
type Dn`, and hence a cycle of length q in the quiver of our 2-CY tilted algebra of
type Dn`,`.

If two consecutive such diagonals start in consecutive vertices of the polygon, then
the corresponding arrow of the q-cycle is not involved in any further cycles of the
quiver of the 2-CY tilted algebra.

If two consecutive diagonals ending in the puncture start in vertices of the polygon
which are further appart, then these vertices are connected by another diagonal.
Moreover there is some triangulation of the part of the polygon cut off by this other
diagonal. In the quiver of the 2-CY tilted algebra this means that the arrow of the
q-cycle is involved in one further triangle, which connects it to the connecting vertex
of some quiver of a cluster tilted algebra of type A.

Case T = E8,2. This is a finite combinatorial task. It is simplified by the following
observations:

(a) Numbering the τ -orbits starting from the top most orbit and below, we have
8 orbits, say σ1, . . . , σ8 (see Figure 5.2).

(b) The orbits σ1, σ2 and σ8 are the only ones having exceptional objects. To
a cluster-tilting object we can associate a triple (a1, a2, a8) of non-negative
integers, where ai denotes the number of indecomposable summands in the
orbit σi.

(c) ai ∈ {0, 1, 2} for i ∈ {1, 2, 8}.
We consider the numbering of the indecomposable objects of E8,2 as in Figure 5.2.

The possible cluster-tilting objects up to a τ -shift are illustrated in Table 5.1. Their
endomorphism rings are depicted in Figure 5.1 E8,2).

Thus the assertion from the theorem follows. �

Remark 5.8. Using Theorem 4.6, we can now mutate at any vertex for a 2-CY tilted
algebra of finite type (see for instance Examples 4.9 and 4.10). One can check that
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in these finite 2-CY categories, all cluster-tilting objects are mutation connected.
We illustrate the mutation graph of E8,2 in Figure 5.3.

T EndT (T ) Type

(0⊕ 24,−, 3⊕ 27) g) (2,0,2)

(24⊕ 48,−, 27⊕ 51) g) (2,0,2)

(0⊕ 24,−, 3⊕ 43) f) (2,0,2)

(24⊕ 48,−, 3⊕ 27) f) (2,0,2)

(0⊕ 24,−, 27⊕ 51) e) (2,0,2)

(24⊕ 48,−, 11⊕ 51) e) (2,0,2)

(24, 28, 11⊕ 51) c) (1,1,2)

(32, 28, 11⊕ 51) c) (1,1,2)

(0⊕ 24, 28, 51) d) (2,1,1)

(0⊕ 32, 28, 51) d) (2,1,1)

(24⊕ 56, 28, 11) b) (2,1,1)

(32⊕ 56, 28, 11) b) (2,1,1)

(0⊕ 24, 28⊕ 60,−) a) (2,2,0)

(0⊕ 32, 28⊕ 60,−) a) (2,2,0)

(24⊕ 56, 28⊕ 60,−) a) (2,2,0)

(32⊕ 56, 28⊕ 60,−) a) (2,2,0)

Table 5.1. Possible cluster-tilting objects up to τ -shift in E8,2.
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Figure 5.2. Numbering of the vertices in the AR-quiver of the 2-CY
triangulated category E8,2.
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a)

b)

c)

d) e)

f)

g)

Figure 5.3. Mutation component of the 2-CY triangulated category E8,2.

Remark 5.9. If the characteristic of k allows to see our 2-CY tilted algebra to be
given by a quiver with potential (that is it does not divide the order of the covering
– see Remark 4.5), and the quiver does not contain any loops, then we are in a setup
where mutation of quivers with potential is defined.

Under these assumptions mutation of quivers with potential and our mutation
rule via coverings yield the same result. For instance this applies to the 2-CY tilted
algebras of type E8,2, provided the characteristic of k is odd or 0.
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6. Appendix

Proof of Theorem 3.5. We have now the following cases:

• M ′
m,m. Using that Al−1A = AAt = 1, we see that −A−1(A − At)(−A) =

A− At. Thus, the arrows in Qm,m remain unchanged.
• M ′

m,f . Observing that M ′
m,f = −(M ′

f,m)t, it suffices to calculate just one of
them.

M ′
f,m =

(
(
l−2∑
i=0

Ci

i∑
j=0

Aj)(A− At) + C −Bt

)
(−A)

=
l−2∑
i=0

Ci

(
−

i∑
j=0

Aj+2 +
i∑

j=0

Aj − A

)
︸ ︷︷ ︸

=1−Ai+1−Ai+2

+
l−3∑
i=0

Bt
iA︸︷︷︸

=CiAi+2

+Bt
l−2A

= −
l−2∑
i=0

CiA
i+1 +

l−2∑
i=0

Ci − Cl−2 Al︸︷︷︸
=1

+Bt
l−2A

= −
l−3∑
i=0

CiA
i+1︸ ︷︷ ︸

Bt
i

−Cl−2A
l−1 +

l−3∑
i=0

Ci +Bt
l−2A

=
l−3∑
i=0

Ci −
l−3∑
i=0

Bt
i +
(
Al−1Bl−2

)t − Cl−2A
l−1.

Thus any arrow γ in Ci, with 0 ≤ i ≤ l− 3 remains unchanged. Let γ be an
arrow in Cl−2. There is a path γαl−1. We replace this arrow γ by an arrow
from the end of γαl−1 to the start of γ. Apply the dual process for arrows in
Qm,f .
• M ′

f,f . This part of the matrix is composed of the following summands.

M ′
f,f =

(
l−2∑
i=0

Ci

i∑
j=0

Aj

)
(A− A−1)

(
l−2∑
i=0

Ci

i∑
j=0

Aj

)t

+

(
l−2∑
i=0

Ci

i∑
j=0

Aj

)
(B − Ct) + (C −Bt)

(
l−2∑
i=0

Ci

i∑
j=0

Aj

)t

+ (D −Dt).

We divide the calculations in 4 steps:
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1) Summands of the type Cl−2(· · · )Ct
l−2. Denote by Σ =

l−1∑
j=0

Aj.

Cl−2

(
l−2∑
j=0

Aj

)
(A− A−1)

(
Cl−2

l−2∑
j=0

Aj

)t

+ Cl−2

(
l−2∑
j=0

Aj

)
(−Ct

l−2)

+ Cl−2

(
Cl−2

l−2∑
j=0

Aj

)t

= Cl−2

(
(Σ− A−1)(A− A−1)(Σ− A)− (Σ− A−1) + (Σ− A)

)
Ct
l−2

= Cl−2

(
A− A−1 + A−1 − A

)
Ct
l−2 = 0.

2) Summands including Cl−2 and Bl−2.

Cl−2

(
l−2∑
j=0

Aj

)
Bl−2 −

(
Cl−2

(
l−2∑
j=0

Aj

)
Bl−2

)t

.

3) Summands including Cl−2 or Bl−2 and terms of lower indices.

Cl−2

(
l−2∑
j=0

Aj

)
(A− A−1)

(
l−3∑
i=0

Ci

i∑
j=0

Aj

)t

+

(
l−3∑
i=0

Ci

i∑
j=0

Aj

)
(A− A−1)

(
l−2∑
j=0

A−j

)
Ct
l−2

+ Cl−2

(
l−2∑
j=0

Aj

)(
l−3∑
i=0

Bi −
l−3∑
i=0

Ct
i

)
+

(
l−3∑
i=0

i∑
j=0

CiA
j

)
(Bl−2 − Ct

l−2)

+ (Cl−2 −Bt
l−2)

(
l−3∑
i=0

i∑
j=0

A−jCt
i

)
+

(
l−3∑
i=0

Ci −
l−3∑
i=0

Bt
i

)(
l−2∑
j=0

A−j

)
Ct
l−2

=
l−3∑
i=0

Cl−2

[
(Σ− A−1)(A− A−1)

(
i∑

j=0

A−j

)
+ (Σ− A−1)(A−i−1 − 1) +

(
i∑

j=0

A−j

)]
Ct
i

+
l−3∑
i=0

Ci

[(
i∑

j=0

Aj

)
(A− A−1)(Σ− A) +

(
i∑

j=0

Aj

)
(−1) + (1− Ai+1)(Σ− A)

]
Ct
l−2

−
l−3∑
i=0

Bt
l−2

(
i∑

j=0

A−j

)
Ct
i +

l−3∑
i=0

Ci

(
i∑

j=0

Aj

)
Bl−2

=
l−3∑
i=0

[
Cl−2

(
−A−1(A+ 1− A−i − A−i−1)− A−i−2 + A−1 +

i∑
j=0

A−j

)
Ct
i

+Ci

(
(Ai+1 + Ai − 1− A−1)(−A)−

i∑
j=0

Aj − A+ Ai+2

)
Ct
l−2

]
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+
l−3∑
i=0

[
Ci

(
i∑

j=0

Aj

)
Bl−2 −Bt

l−2

(
i∑

j=0

A−j

)
Ct
i

]

=
l−3∑
i=0

[
Cl−2

(
i+1∑
j=1

A−j

)
Ct
i + Ci

(
−

i+1∑
j=1

Aj

)
Ct
l−2

]

+
l−3∑
i=0

Ci( i∑
j=0

Aj

)
Bl−2 −

(
Ci

(
i∑

j=0

Aj

)
Bl−2

)t


=
l−3∑
i=0

Cl−2

(
i∑

j=0

Aj

)
Bi −

(
Cl−2

(
i∑

j=0

Aj

)
Bi

)t

+Ci

(
i∑

j=0

Aj

)
Bl−2 −

(
Ci

(
i∑

j=0

Aj

)
Bl−2

)t


4) Summands without terms of index l − 2.

l−3∑
i1=0

l−3∑
i2=0

Ci1

[(
ii∑

j1=0

Aj1

)
(A− A−1)

(
i2∑

j2=0

A−j2

)

+

(
i1∑

j1=0

Aj1

)
(A−i2−1 − 1) + (1− Ai1+1)

(
i2∑

j2=0

A−j2

)]
Ct
i2

=
l−3∑
i1=0

l−3∑
i2=0

Ci1

[
i1−1∑
j1=0

Aj1+1 +

i2∑
j2=0

Ai1+1−j2 −
i1∑

j1=0

Aj1−1−i2

−
i2−1∑
j2=0

A−1−j2 +

i1∑
j1=0

Aj1−1−i2 −
i1∑

j1=0

Aj1 +

i2∑
j2=0

A−j2 −
i2∑

j2=0

Ai1+1−j2

]
Ct
i2

=
l−3∑
i1=0

l−3∑
i2=0

Ci1 [−1 + 1]Ct
i2

= 0.

Thus, to sum up, we have

M ′
f→f =D −Dt + Cl−2

(
l−2∑
j=0

Aj

)
Bl−2 −

(
Cl−2

(
l−2∑
j=0

Aj

)
Bl−2

)t

+
l−3∑
i=0

Cl−2

(
i∑

j=0

Aj

)
Bi −

(
Cl−2

(
i∑

j=0

Aj

)
Bi

)t

+Ci

(
i∑

j=0

Aj

)
Bl−2 −

(
Ci

(
i∑

j=0

Aj

)
Bl−2

)t
 .

Hence, we keep all arrows in Qf,f , and add an arrow for each composition
γαiβ where 0 ≤ i ≤ l − 2 and γ ∈ Qf,m, α ∈ Qm,m, β ∈ Qm,f such that

– neither γαi nor αiβ is zero or factors through an arrow in Qf,f ,
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– either γ ∈ Cl−2 or β ∈ Bl−2, i.e. either γ or β has no extra relations
with the minimal cycle of Qm,m.

• Finally, remove all loops and 2-cycles from the mutated quiver.
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