
WILD ALGEBRAS HAVE ONE-POINT EXTENSIONS

OF REPRESENTATION DIMENSION AT LEAST FOUR

STEFFEN OPPERMANN

Abstract. We show that any wild algebra has a one-point exten-
sion of representation dimension at least four, and more generally
that it has an n-point extension of representation dimension at
least n + 3. We give two explicit constructions, and obtain new
examples of small algebras of representation dimension four.

1. Introduction

In his Queen Mary College Notes [1], Auslander defined the repre-
sentation dimension of an artin algebra as follows.

1.1. Definition (Auslander).

repdim Λ = min{gldEndΛ(M) |M ∈ Λ -mod is a generator

and a cogenerator}.

The motivation for this definition is the following result, which he
proved in the same paper.

1.2. Theorem (Auslander).

Λ representation finite ⇐⇒ repdim Λ ≤ 2.

Auslander hoped that the value of the representation dimension of
a representation infinite algebra is a good measure of how far this
algebra is from having finite representation type (see [1], Chapter III,
Section 5).

The distinction between tame and wild representation type is another
way of saying “how infinite” the representation theory of an algebra is.
It is therefore natural to ask for connections between these two. It
has been conjectured or asked by many people studying this subject
(including Holm, Iyama, Reiten, Schröer), whether the following im-
plication holds (see [3] for a partial result).

1.3. Conjecture.

Λ tame
?
⇒ repdim Λ ≤ 3.

The author was supported by NFR Storforsk grant no. 167130.
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Note that in general the converse does not hold,

repdim Λ ≤ 3 6⇒ Λ tame,

any wild hereditary algebra being a counterexample. Here we want to
prove the following (necessarily weaker) result. For the notation see
Section 2.

1.4. Theorem. Let Λ be an algebra of wild representation type. Then
there is a one-point extension Λ[M ] such that repdim Λ[M ] ≥ 4.

We will give two methods for constructing such one-point extensions
of representation dimension at least four.

The first one will be explained in Section 4 and proven to work in
Sections 5 to 8. For a wild algebra Λ there is, by definition, a two
parameter family of indecomposable modules. We may consider this
family as one Λ⊗kk[X, Y ]-module L. We give a criterion (Theorem 4.2)
when a finite dimensional Λ-submodule of L gives rise to a one-point
extension of representation dimension at least four. Then we show that,
provided the base field is large enough, for any suitable chain of finite
dimensional submodules of L this will eventually hold (Theorem 4.3).
In Section 9 we apply this method to some small wild algebras. By
doing so we will obtain new examples of algebras of representation
dimension four (see Table 1).

The second method is presented in Section 10. We choose some
algebra Λ0, which is known to have a one-point extension of represen-
tation dimension four (and has certain additional properties). Then
for any given wild algebra Λ we use a representation embedding from
Λ0-modules to Λ-modules to create a one-point extension of Λ, which
has representation dimension at least four. This not only works for
one-point extensions and representation dimension four, but we obtain
the following more general result, which allows the construction of new
examples of algebras of arbitrarily large representation dimension.

1.5. Theorem. Let Λ be of wild representation type, n ∈ N. Then there
is an n-point extension Λ[M1][M2] · · · [Mn] of representation dimension
at least n+ 3.

2. Notation

We always assume k to be a field.
For a k-algebra Λ we denote the category of finitely generated left Λ-

modules by Λ -mod, and the category of Λ-modules of finite k-dimension
by Λ -fd. We will mostly assume Λ to be a finite dimensional algebra,
in which case these two notions coincide.

2.1. Definition (one-point extension). Let Λ be a k-algebra. For M ∈
Λ -fd we will denote the one-point extension ( k 0

M Λ) by Λ[M ].
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The Λ[M ] modules are of the form
(
X0
X1

)
ϕ

with X0 ∈ k -Mod, X1 ∈

Λ -Mod and ϕ : M ⊗k X0
- X1. We will usually omit the ϕ when

there is no chance of confusion.

3. Lattices, representation embeddings and

representation dimension

3.1. Definition (right lattice). Let Λ and R be k-algebras. A Λ⊗kR
op-

module L (that is a Λ-R-bimodule, on which k acts centrally) is called
right lattice if it is finitely generated projective as right R-module. The
category of right Λ⊗k R

op-lattices will be denoted by Λ⊗k R
op -r. lat.

When no sides are mentioned, all lattices will be assumed to be right
lattices, that is finitely generated projective with respect to the ring
acting from the right (this ring will usually be denoted by R).

Note that any L ∈ Λ⊗k R
op -r. lat induces an exact functor

L⊗R − : R -fd - Λ -fd .

3.2. Definition (representation embedding). For L ∈ Λ ⊗k R
op -r. lat

we say that L induces a representation embedding if the functor L⊗R−
preserves indecomposability and reflects isomorphism classes.

3.3. Definition (wild). A k-algebra Λ is called wild if it satisfies the
following equivalent conditions (see for instance [6, pages 37-40]).

(1) For any finitely generated k-algebra R there is a representation

embedding R -fd
L⊗R−- Λ -fd.

(2) For any finite dimensional k-algebra R there is a representation

embedding R -mod
L⊗R−- Λ -fd.

(3) For R = k[X, Y ], the polynomial ring in two variables, there is

a representation embedding R -fd
L⊗R−- Λ -fd.

The third equivalent condition in the definition above allows us to
mostly assume R = k[X, Y ]. We denote by k the algebraic closure of
k. To (hopefully) simplify notation, for α, β ∈ k we will denote the
extension field k[α, β] by kαβ. Moreover for any k-vector space M we
will denote by Mαβ the kαβ-vector space M ⊗k kαβ. Note that Mαβ

inherits all additional structure from M ; for instance if Λ is a k algebra
then Λαβ is a kαβ-algebra.

3.4. Definition (full rank sublattice). Let Λ be a k-algebra. For a Λ-
submodule L′ of a Λ⊗k k[X, Y ]-lattice L we say that L′ generates a full
rank sublattice, if one of the following equivalent conditions is satisfied:

(1) rkk[X,Y ](L
′ · k[X, Y ]) = rkk[X,Y ] L,

(2) L′ contains rkk[X,Y ] L elements which are k[X, Y ]-linearly inde-
pendent,

(3) the multiplication map L′⊗k k(X, Y ) - L⊗k[X,Y ] k(X, Y ) is
onto,
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(4) the set of all (α, β) ∈ k
2
, such that the composition

L′

αβ
⊂ - Lαβ -- Lαβ/(X − α, Y − β)

is onto, is non-empty and Zariski open.

(To see that Condition (4) is equivalent to the others, note that dimkαβ
Lαβ/(X−

α, Y −β) = rkL, and moreover that a finite k[X, Y ]-linear independent
set in L is mapped to a linear independent set in Lαβ/(X − α, Y − β)

for all (α, β) in a non-empty open subset of k
2
.)

Our tool for establishing lower bounds for the representation dimen-
sion is the following.

3.5. Theorem (a special case of [5, 4.9]). Let Λ be a finite dimensional
algebra and d ∈ N. Set R = k[X1, . . . , Xd] and let L be a Λ⊗kR-lattice.
Assume the set

{p ∈ MaxSpecR | (L⊗R −)Extd ExtdR(R/p, R/p) 6= 0}

is Zariski-dense. Then

repdim Λ ≥ d+ 2.

(Here, as in [5], the index Extd is supposed to emphasize that L⊗R −
turns d-extensions into d-extensions, and we do not apply L ⊗R − to
the R-module ExtdR(R/p, R/p).)

4. Construction of one-point extensions of

representation dimension four

In this section we give our main method of constructing one-point ex-
tensions of wild algebras, which have representation dimension at least
four. Theorem 4.2 gives a criterion for the representation dimension
of certain one-point extensions to be at least four, and Theorem 4.3
ensures that, provided the base field is large enough, we will always be
able to satisfy the assumptions of this criterion.

Throughout this section Λ is assumed to be a finite dimensional
algebra.

4.1. Setup. Let L be a Λ ⊗k k[X, Y ]-lattice. We will mostly think
of L inducing a representation embedding, but it is only necessary to
assume this in Theorem 4.3.

We choose a Λ-submodule L′ of L, which is finite dimensional (but
otherwise arbitrary for the moment).

For (α, β) ∈ k
2

let fαβ be the composition

L′

αβ∩Lαβ(X−α, Y−β) ⊂ - Lαβ(X−α, Y−β) - Lαβ/(X−α, Y−β),
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where the right factor is induced by the map of k[X, Y ]-modules

kαβ[X, Y ](X − α, Y − β) -- kαβ[X, Y ]/(X − α, Y − β)

(X − α)i(Y − β)j -
{

1 (i, j) = (0, 1)
0 otherwise

.

Moreover, let παβ be the map

Lαβ/((X − α)2, Y − β) -- Lαβ/(X − α, Y − β)

induced by

kαβ [X, Y ]/((X − α)2, Y − β) -- kαβ[X, Y ]/(X − α, Y − β).

4.2. Theorem. Let Λ be a finite dimensional k-algebra, and L a Λ⊗k
k[X, Y ]-lattice. Let L′ be a finite dimensional Λ-submodule of L which
generates a full rank sublattice, such that the set

{(α, β) ∈ k
2
| fαβ does not factor through παβ}

is Zariski-dense. Then

repdim Λ[L′] ≥ 4.

The next theorem makes sure that, under suitable conditions, there
are Λ-submodules L′ satisfying the assumption of Theorem 4.2.

4.3. Theorem. Let Λ be a finite dimensional k-algebra, and assume k is
not countable. Let L be a Λ⊗k k[X, Y ]-lattice inducing a representation
embedding. For any chain (Li)i∈N of finite dimensional Λ-submodules
of L (that is L1 ⊆ L2 ⊆ L3 ⊆ · · · ) such that L = ∪iL

i, there is i ∈ N

such that for L′ = Li the set

{(α, β) ∈ k2 | fαβ factors through παβ}

is not Zariski-dense in k2.

From Theorems 4.2 and 4.3 we immediately obtain

4.4. Corollary. Let Λ be a finite dimensional algebra over an uncount-
able field k. Then Λ has a one-point extension of representation di-
mension at least four.

Proof. Note that the complement of a non-dense subset of k2 contains a
non-empty open subset of k2, and any non-empty subset of k2 is dense

in k
2
. �

5. Proof of Theorem 4.2

We will apply Theorem 3.5. To do so we need a Λ[L′] ⊗k k[X, Y ]-
lattice. By assumption we have a Λ⊗k k[X, Y ]-lattice L. From this we
obtain the Λ[L′]⊗k k[X, Y ]-lattice

L̂ =

(
k[X, Y ]
L

)

ϕ

,
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where the map ϕ : L′ ⊗k k[X, Y ] - L is just multiplication in L.
To verify the assumptions of Theorem 3.5, we set

Eαβ : kαβ[X, Y ]

(X − α, Y − β)
- - kαβ [X, Y ]

((X − α)2, Y − β)
- kαβ[X, Y ]

(X − α, (Y − β)2)
-- kαβ [X, Y ]

(X − α, Y − β)
,

where the first two maps are induced by multiplication with X − α

and Y − β, respectively. We investigate when L̂ ⊗k[X,Y ] Eαβ splits as
2-extension of Λ-modules. This 2-extension is represented by
(

kαβ

Lαβ

(X−α,Y−β)

)
- -

(
kαβ⊕kαβ(X−α)

Lαβ

((X−α)2 ,Y−β)

)
-

(
kαβ⊕kαβ(Y−β)

Lαβ

(X−α,(Y −β)2)

)
--

(
kαβ

Lαβ

(X−α,Y−β)

)
.

We fix (α, β) ∈ k
2
such that the composition L′

αβ
⊂ - Lαβ -- Lαβ/(X−

α, Y −β) is epi (note that there are such pairs (α, β) by Condition (4) in
Definition 3.4). Then we turn the above 2-extension into a 1-extension
by

Ext2

((
kαβ

Lαβ

(X−α,Y−β)

)
,

(
kαβ

Lαβ

(X−α,Y−β)

))
= Ext1

(
Ω

(
kαβ

Lαβ

(X−α,Y−β)

)
,

(
kαβ

Lαβ

(X−α,Y−β)

))
,

where Ω denotes the syzygy as Λ[L′]αβ-module. In our situation, that
means we have to find out whether the short exact sequence

(1)

(
kαβ

Lαβ

(X−α,Y−β)

)
- - H --

(
0

L′

αβ
∩Lαβ(X−α,Y−β)

)

in the following diagram splits.
(

kαβ

Lαβ

(X−α,Y−β)

)
- -

(
kαβ⊕kαβ(X−α)

Lαβ

((X−α)2,Y−β)

)
-

(
kαβ⊕kαβ(Y−β)

Lαβ

(X−α,(Y −β)2)

)
--

(
kαβ

Lαβ

(X−α,Y−β)

)

(
kαβ

Lαβ

(X−α,Y−β)

)-

-(
?
παβ

)
--

PB

(
kαβ

Lαβ

(X−α,Y−β)

)

wwwwwwwwwwwwwwwwwww

- - H

6

-

(
0
fαβ

)
6

(
kαβ

L′

αβ

)

6

--
(

kαβ

Lαβ

(X−α,Y−β)

)

wwwwwwwwwwwwwwwwwww

(
0

L′

αβ
∩Lαβ(X−α,Y−β)

)-

-

--

Here the first row is the original 2-extension, the short exact sequence
(

0
L′

αβ
∩Lαβ(X−α,Y−β)

)
- -

(
kαβ

L′

αβ

)
--

(
kαβ

Lαβ

(X−α,Y−β)

)

is the projective resolution of
(

kαβ

Lαβ/(x−α,Y−β)

)
(note that

(
kαβ

L′

αβ

)
=

(
k
L′

)[kαβ :k]

as Λ-modules), and H is the pullback of the square to its right. By as-

sumption there is a Zariski-dense U ⊆ k
2
, such that fαβ does not factor

through παβ for any (α, β) ∈ U . Therefore the short exact sequence
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(1) is not split for any of these (α, β). This means that our original

2-extension L̂⊗k[X,Y ] Eαβ is non-split for all

(α, β) ∈ U\{(α, β) | L′

αβ
⊂ - Lαβ -- Lαβ/(X−α, Y −β) is not epi}.

The set subtracted is a proper closed subset by the assumption that L′

generates a full rank sublattice. Therefore the difference is still dense.
Hence the assumptions of Theorem 3.5 are met, so repdim Λ[L′] ≥

4. �

6. Limits and completeness

In this section we recall some classical results in order to fix notation
and for the convenience of the reader. They will be applied to represen-
tation embeddings in Section 7 and used in the proof of Theorem 4.3
in Section 8.

Throughout this section we assume k to be a field, and R to be a
noetherian k-algebra.

6.1. Lemma. Let M be a finite dimensional R-module,

· · · - N3
- N2

- N1

a sequence of morphisms of finite dimensional R-modules. Then for
any j we have

ExtjR(M, lim←−
i

Ni) = lim←−
i

ExtjR(M,Ni).

Proof. See [7], Section 3.5, in particular Proposition 3.5.7 and Theo-
rem 3.5.8. �

6.2. Lemma. Let M be a finite dimensional R-module,

N1
- N2

- N3
- · · ·

a sequence of morphisms of finite dimensional R-modules. Then for
any j we have

ExtjR(lim−→
i

Ni,M) = lim←−
i

ExtjR(Ni,M).

Proof. This is just the opposite version of Lemma 6.1. �

6.3. Definition. We call an ideal I ER cofinite if dimk R/I <∞. We
call R complete with respect to an ideal I if R = lim←−nR/I

n.

6.4. Lemma. Let R be complete with respect to a cofinite ideal I, and
M be a finitely generated R-module. Then M = lim

←−n
M/InM .
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7. Representation embeddings and infinite dimensional

modules

In this section we assume R and S to be noetherian k-algebras, and

that there is a representation embedding R -fd
L⊗R−- S -fd.

Our aim is to show that the functor L⊗R − also reflects splitting of
certain short exact sequences involving infinite dimensional modules.
More precisely, we want to show the following:

7.1. Theorem. Let R be complete with respect to some cofinite ideal
or be commutative. Let A- - B -- C be a non-split short exact
sequence of R-modules, with dimk A < ∞ or dimk C < ∞. Then the
induced exact sequence

L⊗R A- - L⊗R B -- L⊗R C

is also non-split.

We will prove the claims in Lemmas 7.2 to 7.5.

7.2. Lemma. Theorem 7.1 holds if R is complete with respect to some
cofinite ideal I, A and B are finitely generated, and dimk C <∞.

Proof. By Lemma 6.4 we have A = lim
←−n

A/InA. Therefore, by Lemma 6.1
we have

Ext1
R(C,A) = Ext1

R(C, lim
←−
n

A/InA) = lim
←−
n

Ext1
R(C,A/InA).

So there is n ∈ N such that the pushout of A- - B -- C along
A -- A/InA is also non-split. This pushout however is a short exact
sequence of finite dimensional R-modules. Therefore it remains non-
split when tensored with L. Tensoring the entire pushout with L we
obtain

L⊗R A- - L⊗R B -- L⊗R C

L⊗R A/I
nA

??
- - L⊗R PO

??
-- L⊗R C

wwwww

Since the lower sequence is non-split, and it is the pushout of the upper
sequence, the upper sequence also has to be non-split. �

7.3. Lemma. Theorem 7.1 holds if R commutative, A and B are finitely
generated and dimk C <∞.

Proof. Let I be a cofinite ideal of R such that In annihilates C for some

n ∈ N. Set R̂ = lim
←−i

R/I i the completion of R at I. Then the map

R̂ ⊗R HomR(M,N) - Hom bR(R̂⊗RM, R̂⊗R N)

r̂ ⊗ ϕ - [r̂′ ⊗m 7→ r̂r̂′ ⊗ ϕ(m)]
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is natural in M and N . For M = R it is an isomorphism. Now note

that the functors R̂⊗RHomR(−, N) and Hom bR(R̂⊗R−, R̂⊗RN) from

R -modop to R̂ -mod are both left exact for any N . Hence the above
map is a natural isomorphism on R -mod.

We have an embedding of R-modules R ⊂ - R̂. Note that C ∼=
R̂⊗R C by our choice of I.

Applying HomR(C,−) to the epimorphism B -- C we obtain the
first row of the following commutative diagram.

HomR(C,B) - HomR(C,C)

R̂ ⊗R HomR(C,B)

wwwwwww
- R̂⊗R HomR(C,C)

wwwwwww

Hom bR(R̂⊗R C, R̂⊗R B)

wwwwwww
- Hom bR(R̂⊗R C, R̂⊗R C)

wwwwwww

By assumption the morphism in the first row is not onto, hence neither
is the morphism in the third row. This means that the short exact

sequence of R̂-modules

R̂ ⊗R A- - R̂⊗R B -- R̂⊗R C

is non-split.
We want to show that this sequence, together with the R̂ finitely

generated projective S⊗k R̂-module L⊗RR̂, satisfies the assumptions of

Lemma 7.2. It only remains to see that L⊗R R̂ induces a representation

embedding. The finite dimensional R̂-modules are exactly the finite
dimensional R-modules which are annihilated by some power of I. For

such a module M we clearly have L⊗RM ∼= L⊗R R̂⊗ bRM , so L⊗R R̂
induces a representation embedding since L induces a representation
embedding by assumption.

So, by Lemma 7.2, we know that the last row of the following com-
mutative diagram does not split.

L⊗R A- - L⊗R B -- L⊗R C

L⊗R R̂⊗R A

?

?

- - L⊗R R̂⊗R B

?

?

-- L⊗R C

wwwwwwwwww

(L⊗R R̂)⊗ bR (R̂⊗R A)

wwwwwwwww
- - (L⊗R R̂)⊗ bR (R̂ ⊗R B)

wwwwwwwww
-- (L⊗R R̂)⊗ bR (R̂⊗R C)

wwwwwwwww

Since it is a pushout of the first row, this row does not split either. �

7.4. Lemma. Theorem 7.1 holds if dimk C <∞.
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Proof. Assume the sequence L⊗R A- - L⊗R B -- L⊗R C splits.
Let h : L⊗RC - L⊗RB be a splitting. Note that dimk L⊗RC <∞.
Let {ci, . . . cr} be a k-basis of L⊗R C. We write h(ci) =

∑Ni

j=1 li,j ⊗ bi,j
with li,j ∈ L and bi,j ∈ B. We denote by B0 the finitely generated
submodule of B generated by the bi,j . Then by definition h factors
through L ⊗R B0

⊂ - L ⊗R B. We obtain the following diagram,
where A0 is the kernel of the map B0

-- C and the map A0
- - A

is the kernel morphism.

A0
- - B0

-- C

A
?

?

- - B
?

?

-- C

wwwww

Since the lower sequence is the pushout of the upper sequence, the up-
per sequence is also non split. However we have just seen that the upper
sequence splits when tensored with L. This contradicts Lemma 7.2 for
R complete, and Lemma 7.3 for R commutative. �

7.5. Lemma. Theorem 7.1 holds if dimk A <∞.

Proof. We denote by−∗ the functor Hom(−, k) : R -Modop -� R -Mod.
We obtain the following commutative diagram of R-modules, where the
vertical maps are the natural embedding of the spaces into their double
duals.

A- - B -- C

A∗∗

wwwww
- - B∗∗

?

?

-- C∗∗

?

?

Since the original sequence is a pullback of its double dual, the double
dual cannot split. Hence also the dual sequence

C∗- - B∗ -- A∗

is non-split. We will show that it fulfills the assumptions of Lemma 7.4

together with the R finitely generated projective Sop ⊗k R-lattice L̃ =
HomR(L,R). Indeed we have

L̃⊗Rop M∗ = HomR(L,R)⊗Rop M∗

= HomR(L,M∗)

= HomR(L,Homk(M, k))

= Homk(L⊗RM, k)

= (L⊗RM)∗

Since a finite dimensional module M is indecomposable if and only if
M∗ is so, and L⊗RM is indecomposable if and only if (L⊗RM)∗ is so,

the fact that L̃⊗Rop − preserves indecomposables follows from the fact
that L ⊗R − preserves indecomposables. By the same argument one
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sees that L̃ ⊗Rop − reflects isomorphism classes since L ⊗R − reflects
isomorphism classes.

Hence by Lemma 7.4 the sequence

L̃⊗Rop C∗- - L̃⊗Rop B∗ -- L̃⊗Rop A∗

(L⊗R C)∗

wwwww
- - (L⊗R B)∗

wwwww
-- (L⊗R A)∗

wwwww

is non-split. But since this is the dual of the sequence

L⊗R A- - L⊗R B -- L⊗R C

this sequence has to also be non-split. �

8. Proof of Theorem 4.3

For (α, β) ∈ k2 we denote the fαβ corresponding to the submodule
Li of L by f iαβ . We set

Hi = {(α, β) ∈ k2 | f iαβ factors through παβ}.

The proof of Theorem 4.3 now relies on the following two Lemmas.

8.1. Lemma.
∞⋂

i=1

Hi = ∅

8.2. Lemma. For any i the set Hi is Zariski-constructible in k2.

Proof of Theorem 4.3. Assume all the Hi are dense in k2. Since Hi is
constructible by Lemma 8.2 it contains a non-empty subset Ui ⊆ Hi

which is open in k2. Now by Lemma 8.1 we have ∩∞i=1Ui = ∅. Then,
taking a basic open subset D(fi) ⊆ Ui for every i > 0, we see that
k2 = ∪∞i=0V (fi) is a countable union of curves. This is impossible,
since every line intersects a curve in only finitely many points, but our
field is uncountable. Hence there is some i such that the set Hi is not
dense. �

Proof of Lemma 8.1. Let (α, β) ∈ k2. We denote the fαβ corresponding
to L itself by f∞

αβ. Note that the pullback

k[X, Y ]/(X − α, Y − β)- - E -- (X − α, Y − β)

of the short exact sequence

k[X, Y ]

(X − α, Y − β)
-·(X−α)- k[X, Y ]

((X − α)2, Y − β)
-- k[X, Y ]

(X − α, Y − β)

along L(X − α, Y − β)

(X−α)7→0
(Y−β)7→1- k[X, Y ]/(X − α, Y − β) does not

split. Tensoring with L we obtain the pullback depicted in the following
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diagram (tensoring with L is exact since L is projective over k[X, Y ]).

L

(X − α, Y − β)
- - L

((X − α)2, Y − β)

παβ -- L

(X − α, Y − β)

PB

L

(X − α, Y − β)

wwww

- - L⊗k[X,Y ] E

66

-- L(X − α, Y − β)

f∞

αβ
66

By Theorem 7.1 the lower sequence does not split, so f∞

αβ does not
factor through παβ. By Lemma 6.2

Ext1(L(X − α, Y − β),
L

(X − α, Y − β)
)

= lim←−
i

Ext1(Li ∩ L(X − α, Y − β),
L

(X − α, Y − β)
),

so there has to be iαβ ∈ N such that f
iαβ

αβ does not factor through παβ .
This shows that (α, β) 6∈ Hi, so (α, β) 6∈ ∩∞i=1Hi. Since this argument
works for every (α, β) ∈ k2 it follows that ∩∞i=1Hi = ∅. �

For the proof of Lemma 8.2 we will need the following observation.

8.3. Lemma. Let A
ϕ- B �ψ

C in Λ ⊗k k[X, Y ] -r. lat. Then the
set

{(α, β) ∈ k2 | ψ ⊗
k[X,Y ]

k[X,Y ]
(X−α,Y −β)

factors through ϕ ⊗
k[X,Y ]

k[X,Y ]
(X−α,Y −β)

}

is constructible.

Proof. We denote by L the set given in the lemma. By choosing
k[X, Y ]-bases of the three lattices we have (α, β) is in L if and only
if a certain finite system of linear equations (over k[X, Y ]) is solvable
modulo (X − α, Y − β). However, the solvability of a system of linear
equations can be checked by investigating if certain subdeterminants
are zero or non-zero. Clearly all subdeterminants are polynomials, so
the claim follows. �

Proof of Lemma 8.2. We need to find a generic version of f iαβ and παβ .
To do so, we set

L⊗k k[A,B]⊗k k[X, Y ]

((X −A)2, Y − B)

π -- L⊗k k[A,B]⊗k k[X, Y ]

(X − A, Y − B)

(Li ⊗ k[A,B]) ∩ ((L⊗k k[A,B])(X − A, Y − B))

f i
6
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where π is the canonical projection and f i is the composition

(Li ⊗ k[A,B]) ∩ ((L⊗k k[A,B])(X − A, Y − B))

(L⊗k k[A,B])(X − A, Y −B)

embedding

⊂

-

L⊗k k[A,B]⊗k k[X, Y ]

(X −A, Y −B)

1L ⊗
(X−A)7→0
(Y−B)7→1

-

Now clearly

παβ = π ⊗
k[A,B]

k[A,B]
(A−α,B−β)

and f iαβ = f i ⊗
k[A,B]

k[A,B]
(A−α,B−β)

,

so we can apply Lemma 8.3 to complete the proof. �

9. Examples

The first example gives no new result, but it illustrates the idea with
only very little calculation.

9.1. Example. Let Λ = k[◦
a-
b-

c
- ◦], L = k[X, Y ]

1-
X-

Y
- k[X, Y ]. Let

L′ be the Λ-submodule generated by {(1, 0), (X, 0), (Y, 0)}. That is

Pol1
1-
X-

Y
- Pol2, if Poli denotes the polynomials of degree at most i.

Let (α, β) ∈ (ksep)2. We have to find out whether there is a map h as
indicated in the following diagram.




kαβ ⊕ kαβ(X − α)

kαβ ⊕ kαβ(X − α)

1
?
X
?
β
?


 --




kαβ

kαβ

1
?
α
?
β
?







(X − α)kαβ + (Y − β)kαβ

(X − α) Pol1αβ +(Y − β) Pol1αβ

1
?
X
?
Y
?




(X−α)7→0
(Y−β)7→1

6
h

�

Assume such an h exists. It can be assumed to be kαβ-linear. Let
the upper component of h map (X − α) to h1(X − α) and (Y − β) to
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1+h2(X −α). Then in the lower component (X −α)(Y −β) is on the
one hand mapped to

(X − α)(Y − β) = X(Y − β)− α(Y − β)

= b(Y − β)− αa(Y − β)

7→ b(1 + h2(X − α))− αa(1 + h2(X − α))

= α + (X − α) + h2(X − α)− α(1 + h2(X − α))

= X − α

and on the other hand to

(X − α)(Y − β) = Y (X − α)− β(X − α)

= c(X − α)− βa(X − α)

7→ c(h1(X − α))− βa(h1(X − α))

= βh1(X − α)− βh1(X − α)

= 0

This gives a contradiction. Therefore

repdim Λ[L′] = 4.

However the algebra Λ[L′] is just k[◦
a-
b-

c
- ◦

a-
b-

c
- ◦]/(ab − ba, ac −

ca, bc− cb), which has already bean treated in [5].

The examples in Table 1 all work in quite a similar way as the one
above, except that the calculation gets longer due to the size of the
diagrams. In all of them we take Λ to be the quiver algebra kQ with
Q the quiver given in the table. Then L′ is such that the assumption
of Theorem 4.2 is satisfied. Therefore repdim kQ[L′] ≥ 4 for all kQ[L′]
in Table 1. In all examples Iyama’s general upper bound for the repre-
sentation dimension ([4], the combination of Theorems 2.2.2 and 2.5.1)
shows that we actually have repdim kQ[L′] = 4.



O
N

E
-P

O
I
N

T
E

X
T

E
N

S
I
O

N
S

1
5

Table 1: Examples

Q: L: Generators of L′: Quiver of kQ[L′]: Relations:

◦ ◦ ◦ ◦ ◦

◦
?��

--

k[X, Y ] k[X, Y ] k[X, Y ] k[X, Y ] k[X, Y ]

k[X, Y ]2

(1,1)

?

(1,Y )

��

(1
,X

)(0,1)

-

(1,0)

-

(X−1 0 0 0 0
0 ), (X−Y 0 0 0 0

0 )

(0 Y−X 0 0 0
0 ),(0 Y−XY 0 0 0

0 )

(0 0 Y 0 0
0 ), (0 0 Y−X 0 0

0 )

(0 0 0 Y−1 0
0 ), (0 0 0 Y 0

0 )

(0 0 0 0 X
0 ), (0 0 0 0 X−1

0 )

◦

◦

b0

�

a0

�
◦

b1

�

a1

�

◦

a2

?

b2

?
◦

b3

-

a3

-

◦

b4

-

a4

-

◦

c2

?

c4

�

c3

�

c1

-

c0

-

bici = ai−1ci−1

+ai+1ci+1

i ∈ Z/5Z

◦

◦

�

◦

�

◦
?
◦

-

◦

-

k[X, Y ]2

k[X, Y ]

(1
0)

�

k[X, Y ]

(1
1)

�

k[X, Y ]

(0
1)

?
k[X, Y ]

( 1
Y )

-

k[X, Y ]

( 1
X)

-

(
(0,X−Y )

0 ··· 0

)
(

(−X,X)
0 ··· 0

)
(

(Y−X,0)
0 ··· 0

)
(

(XY,−X)
0 ··· 0

)
(

(X,−1)
0 ··· 0

)

◦

◦

a0

?

a1

?

a2

?

a3

?

a4

?

◦

b0

�
◦

b1

�

◦

b2

?
◦

b3

-

◦

b4

-

aibi,
(ai−1 + ai+1)bi

i ∈ Z/5Z

◦ ◦

◦

��

--

k[X, Y ] k[X, Y ]

k[X, Y ]

Y

�

1

�

X

-

1

-

(1 0
0 ),(Y 0

0 )

(0 1
0 ),(0 X

0 )

◦

◦

a1

�

a0

�
◦

a3

-

a2

-

◦

b1

�

b0

�

b3

-
b2

-

aibj = ajbi

i, j ∈ {0 . . . 3}



1
6

S
T

E
F
F
E

N
O

P
P

E
R

M
A

N
N

Table 1: (continued)

Q: L: Generators of L′: Quiver of kQ[L′]: Relations:

◦

◦ �� ◦

--

k[X, Y ]

k[X, Y ]

X

�

1

�

k[X, Y ]

Y

-

1

-

( p
0 0)

p ∈ {1, X, Y,XY }

◦

◦

a00

?

a01

?

a10

?

a11

?

◦

b1

�

b0

�
◦

c1

-
c0

-

a00b1 = a10b0
a01b1 = a11b0
a00c1 = a01c0
a10c1 = a11c0

◦ ◦

◦

�--

k[X, Y ]2 k[X, Y ]

k[X, Y ]2

(1, 1)

�
(
X

Y

)

-

(
1

1

)

-

(
(p,0) 0

0

)
,

(
(0,p) 0

0

)
,

(
(0,0) p

0

)

p = X iY j, 0 ≤ i, j ≤ 2

◦

◦

�

18

◦

9

-

◦

�

2

-

◦

◦ �� ◦

-

k[X, Y ]

k[X, Y ]

(
X

Y

)

�

(
1

1

)

�

k[X, Y ]

(
1
1

)

-

(
(p,0)

0 0

)
,

(
(0,p)

0 0

)
,

p = X iY j, 0 ≤ i, j ≤ 2

◦

◦

18

?

◦
�

2

◦
-
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10. Construction of n-point extensions of large

representation dimension

Corollary 4.4 says that any wild algebra has a one-point extension
of representation dimension at least four, provided the base-field is
sufficiently large. We wish to remove this assumption on the field. In
fact we will prove the following more general result

10.1. Theorem. Let Λ be a finite dimensional wild algebra, n ∈ N.
Then there is an iterated one-point extension Λ[M1] · · · [Mn] (Mi ∈
Λ[M1] · · · [Mi−1] -mod — such an iterated one-point extension will be
called n-point extension) such that

repdim Λ[M1] · · · [Mn] ≥ n+ 3.

For the proof we will use the fact that we know the theorem holds
for some algebras (which we do from [5]). Then we use a representation
embedding to carry it over to an arbitrary wild algebra.

We will now be using the polynomial ring k[X] = k[X0, . . . , Xn].

10.2. Setup. Assume we have finite dimensional algebras Λ0, Γ and an
extension Σ0 =

(
Γ
M0 Λ0

)
. Moreover we assume there is a Σ0 ⊗k k[X]-

lattice L0 =
(
LΓ
LΛ0

)
such that

(1) the algebra Γ is triangular with exactly n simple modules (up
to isomorphism) and all of these have trivial endomorphism
ring (this means there are simples S1, . . . , Sn such that ∀i :
EndΓ(Si) = k and ∀i ≤ j : Ext1

Γ(Sj, Si) = 0 – hence extensions
with Γ are n-point extensions),

(2) there is a non-empty open subset U ⊆ MaxSpec k[X] such that
for any p ∈ U the first n terms of the projective resolution of
L0 ⊗k[X] k[X]/p have the form

(
Pn−1

M0 ⊗Γ Pn−1

)
- · · · -

(
P0

M0 ⊗Γ P0

)
-- L0 ⊗k[X] k[X]/p,

for projective Γ-modules P0, . . . Pn−1,
(3) the lattice L0 satisfies the assumption of Theorem 3.5 for d =

n + 1. In particular repdim Λ0 ≥ n + 3.

10.3. Remark. It is shown implicitly in [5], Examples 7.2 and 7.3
that the following two sets of algebras fulfill all the assumptions of
Setup 10.2. We denote by QN,L the quiver

1
◦

x1-
...
xN

-

2
◦

x1-
...
xN

-

3
◦ · · ·

L−1
◦

x1-
...
xN

-

L
◦ .
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(1) – from [5, 7.2]:

Λ0 = kQn+2,2

Γ = kQn+2,n/(xixj + xjxi, x
2
i | 1 ≤ i, j ≤ n+ 2)

Σ = kQn+2,n+2/(xixj + xjxi, x
2
i | 1 ≤ i, j ≤ n+ 2)

(2) – from [5, 7.3]:

Λ0 = kQn+2,2

Γ = kQn+2,n/(xixj − xjxi | 1 ≤ i, j ≤ n + 2)

Σ = kQn+2,n+2/(xixj − xjxi | 1 ≤ i, j ≤ n + 2)

The important point for us is: It is possible to find algebras satisfying
the assumptions of Setup 10.2.

10.4. Proposition. With the setup above, let Λ be another algebra such
that there is a representation embedding F : Λ0 -mod - Λ -mod.
Then for M = FM0 ∈ Λ⊗k Γop -mod we have

repdim

(
Γ
M Λ

)
≥ n + 3.

Note that Theorem 10.1 follows immediately from this proposition.

Proof of Proposition 10.4. We set Σ = ( Γ
M Λ). Then F extends to a

functor Σ0 -Mod - Σ -Mod by

F(

(
XΓ

XΛ0

)

ϕ

) =

(
XΓ

FXΛ0

)

Fϕ

.

Note that for a projective Γ-module P , the projective Σ0-module
(

P
M0⊗ΓP

)

is mapped to the projective Σ-module
(

P
M⊗ΓP

)
.

To show that the representation dimension of Σ is at least n+ 3, we
apply Theorem 3.5 with the lattice L = FL0 and d = n + 1.

Assume p is in the open set U described in Setup 10.2(2), and let

E : k[X]/p- - En - · · · - E0
- k[X]/p

be an n+ 1 extension of k[X]-modules. To find out whether the n+ 1-
extension L0 ⊗k[X] E splits we compare it to a projective resolution of
L0 ⊗k[X] k[X]/p as indicated in the following diagram.

L0 ⊗k[X] k[X]/p- - L0 ⊗k[X] En - L0 ⊗k[X] En−1
- · · · - L0 ⊗k[X] E0

- L0 ⊗k[X] k[X]/p

L0 ⊗k[X] k[X]/p

wwwwwwwwwwwww
- - PB

6

-
(

Pn−1

M0 ⊗Γ Pn−1

)

6

- · · · -
(

P0

M0 ⊗Γ P0

)

6

-- L0 ⊗k[X] k[X]/p

wwwwwwwwwwwww

Ωn(L0 ⊗k[X] k[X]/p)
-

-

--

We denote the short exact sequence L0⊗k[X]k[X]/p- - PB -- Ωn(L0⊗k[X]

k[X]/p) in the diagram above by F̂. Note that by our assumptions on Γ
the module Ωn(L0⊗k[X] k[X]/p) is of the form ( 0

H) for some Λ0-module
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H . We denote by F the one-extension between the Λ0-modules H and

LΛ0 ⊗k[X] k[X]/p in the second component of F̂. Now observe that

L0 ⊗k[X] E splits as n+ 1-extension of Σ0-modules

⇐⇒ F̂ splits

⇐⇒ F splits

⇐⇒ FF splits

since F is a representation embedding, and by applying F to the diagram
above

⇐⇒ FF̂ splits

⇐⇒ FE splits as n + 1-extension of Σ-modules.

By 3 of Setup 10.2, the set

V = {p ∈ MaxSpec k[X] | ∃E ∈ Extn+1
k[X](k[X]/p, k[X]/p) such that

L0 ⊗k[X] E is non-split as n+ 1-extension of Σ0-modules}

is dense in MaxSpec k[X]. Therefore so is its intersection U ∩ V with
the open set from 10.2(2). By the equivalences above we have that
U ∩ V is contained in the set

{p ∈MaxSpec k[X] | ∃E ∈ Extn+1
k[X](k[X]/p, k[X]/p) such that

L⊗k[X] E is non-split as n+ 1-extension of Σ-modules}.

Hence we may apply Theorem 3.5, and obtain repdim Σ ≥ n+ 3. �

10.5. Corollary. For any n ∈ N and i ∈ {1, 2, 3} there is an ∈ N such
that there is an algebra of representation dimension n + 3 with quiver
Qi as below.

Q1 ◦
3 - ◦

an - ◦
1

n+ 2- ◦
2

n + 2- ◦
3

· · · ◦
n−1

n + 2- ◦
n

Q2 ◦

◦
an -

2
-

◦
1

n+ 2- ◦
2

n + 2- ◦
3

· · · ◦
n−1

n + 2- ◦
n

◦

-

Q2 ◦

◦

◦ - ◦
an -

--
◦
1

n+ 2- ◦
2

n + 2- ◦
3

· · · ◦
n−1

n + 2- ◦
n

◦

-

◦

-

(an arrow
n- stand for n arrows in that position)
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Proof. In the setup of Proposition 10.4 we choose Λ0,Γ, and M0 as in
any of the two examples presented in Remark 10.3. We choose Λ =

k [◦ --- ◦] , k

[
◦

◦
-

-

◦

-

]
, and k

[
◦
◦
◦ - ◦

--

◦
-

◦

-

]
, respectively for the three cases of

the corollary. Since these algebras are wild, a representation embedding
as required by Proposition 10.4 exists. �
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