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AND PERFECT GHOSTS

STEFFEN OPPERMANN AND JAN ŠŤOVÍČEK

Abstract. We show, for a wide class of abelian categories relevant in
representation theory and algebraic geometry, that the bounded derived
categories have no non-trivial strongly finitely generated thick subcat-
egories containing all perfect complexes. In order to do so we prove a
strong converse of the Ghost Lemma for bounded derived categories.

1. Introduction

Bondal and van den Bergh [4] have introduced the notion of a triangulated
category being strongly finitely generated. They have shown that this prop-
erty is useful when studying the representability of certain cohomological
functors.

Definition 1 ([4]). Let T be a triangulated category. For T ∈ T let

〈T 〉 = 〈T 〉1 = add{T [i] | i ∈ Z}, and

〈T 〉n+1 = add{cone(f) | f ∈ HomT (〈T 〉, 〈T 〉n)}.

The category T is called strongly finitely generated if there is T ∈ T and
n ∈ N such that T = 〈T 〉n.

In Rouquier’s terminology [15] strongly finitely generated triangulated
categories are those which have finite dimension.

The main result of this paper is that subcategories of bounded derived
categories, which satisfy a natural assumption making sure that they are not
too small (in particular they should not be the bounded derived category
of an abelian subcategory), can only be strongly finitely generated if they
actually coincide with the entire bounded derived category.

This result came as a surprise. One might expect subcategories of strongly
finitely generated categories to be strongly finitely generated again. However
here we show that actually the opposite is the more typical behavior.

More precisely we will show the following:

Theorem 2 (see Theorem 7).

(1) Let Λ be a noetherian algebra, that is a module finite algebra over
a commutative noetherian ring. Let T be a thick subcategory of
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Db(mod-Λ) such that perf-Λ ⊆ T . If T is strongly finitely gen-
erated, then T = Db(mod-Λ).

(2) Let X be a projective scheme over a commutative noetherian ring R.
Let T be a thick subcategory of Db(cohX) such that Db(vectX) ⊆ T .
If T is strongly finitely generated then T = Db(cohX).

In many cases it is known that the bounded derived category is strongly
finitely generated. If Λ is an artin algebra, Db(mod-Λ) is strongly finitely
generated by [15, Proposition 7.37]. If X is a separated scheme of finite
type over a perfect field, Db(cohX) is strongly finitely generated by [15,
Theorem 7.38] or [13, Theorem 6.3]. Thus for those cases we obtain the
following consequence of Theorem 2:

Corollary 3. (1) Let Λ be an artin algebra. A thick subcategory T of
Db(mod-Λ) such that perf-Λ ⊆ T is strongly finitely generated if
and only if T = Db(mod-Λ).

(2) Let X be a projective scheme of finite type over a finitely generated
algebra over a perfect field. A thick subcategory T of Db(cohX)
such that Db(vectX) ⊆ T is strongly finitely generated if and only
if T = Db(cohX).

Note that the condition in (2) just means that the scheme is both pro-
jective over a noetherian ring, and of finite type over a perfect field, and
hence it is also separated over this field. Thus both our Theorem 2(2) and
the above-mentioned result of [13, 15] apply.

Theorem 2(1) and the corollary get a more concrete flavour if one com-
pares them to several classification results on the thick subcategories T such
that perf-Λ ⊆ T ⊆ Db(mod-Λ). Such subcategories correspond bijectively
to thick subcategories of the Verdier quotient Db(mod-Λ)/perf-Λ, which is
for Gorenstein algebras Λ triangle equivalent to MCM(Λ), the stable cate-
gory of maximal Cohen-Macaulay Λ-modules; see [5, Theorem 4.4.1]. Let
us mention a few classification results on subcategories of MCM(Λ), with-
out any ambition to give a complete list. If Λ = kG is a finite dimensional
group algebra over a field k, we refer to [3, Theorem 3.4]. For a commuta-
tive abstract hypersurface local ring Λ, the Main Theorem of [18] applies.
Finally, an explicitly computed example for Λ = k〈x, y〉/(x2, y2, xy + yx)
can be found in [16, Proposition 21]. In all these setups, the references give
an explicit list of thick subcategories of MCM(Λ), and thus of thick sub-
categories of Db(mod-Λ) containing perfect complexes. Our Theorem 2(1)
now shows that none of the non-trivial categories in these lists is strongly
finitely generated.

The main ingredient for the proof of Theorem 2 is a converse of the Ghost
Lemma (see [2] for some background on the Ghost Lemma): A map is called
a ghost for an object M if the induced map between covariant Hom-functors
vanishes on {M [i] | i ∈ Z} (see Definition 19). Then we show the following:

Theorem 4 (see Theorem 24). Let M and X be objects in Db(mod-Λ)
(resp. Db(cohX)) for Λ (resp. X) as in Theorem 2. Then X ∈ 〈M〉n if and
only if the composition of any sequence of n maps

Xn
// Xn−1

// · · · // X1
// X,
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all of which are M -ghosts, vanishes.

The “only if” part of this theorem is the usual Ghost Lemma, the “if”
part is the principal new result. Actually we prove (and need) a stronger
statement (see Theorem 24), which claims that it even suffices to look at
ghosts in the smaller category perf-Λ (resp. Db(vectX)).

This paper is organized as follows:
In Section 2 we fix and explain the general setup of our paper. We then

prove that in both parts of Theorem 2 we are in the situation of our general
setup.

In Section 3 we study what kind of products exist in right bounded derived
categories. Furthermore we determine which objects are cocompact (that
means their contravariant Hom-functors send products to coproducts).

This is a central ingredient for the proof of our converse of the Ghost
Lemma in Section 4. In that section we also show that this converse of the
Ghost Lemma gives rise to a proof that certain subcategories of bounded
derived categories can only be strongly finitely generated if they coincide
with the entire bounded derived category.

2. General setup

In this section we fix the general setup for the rest of the paper. We then
show that it generalizes both setups of Theorem 2.

Setup 5. Fix a commutative noetherian ring R, and R-categories E ⊆ A
such that:

(1) A is a skeletally small abelian R-category and each Exti-group (i ≥
0) is a finitely generated R-module.

(2) E ⊆ A is a full subcategory closed under extensions and kernels of
epimorphisms in A.

(3) E is generating in A, that is for any A ∈ A there is an epimorphism
E → A for some E ∈ E .

(4) there is n ∈ N such that ExtiA(E,F ) = 0 for any i > n and E,F ∈ E .

Remark 6. We will see in Lemma 14 that for E,F ∈ E one has ExtiE(E,F ) =
ExtiA(E,F ), where ExtiE(E,F ) is the Yoneda Ext in the exact category E .
Thus (4) of Setup 5 is equivalent to all sufficiently high extensions vanishing
in E , that is to gldim E <∞.

We can now give our most general result on strongly finitely generated
subcategories of bounded derived categories.

Theorem 7. Let E and A be as in Setup 5. Let T be a thick subcategory
of Db(A) such that Db(E) ⊆ T . If T is strongly finitely generated then
T = Db(A).

We give a proof of this theorem at the end of this paper.
The following observation and proposition show that Setup 5 generalizes

both setups of Theorem 2. In particular Theorem 7 implies Theorem 2.

Observation 8. Let Λ be a noetherian algebra over a commutative noe-
therian ring R. Then for A = mod-Λ and E = proj-Λ the assumptions of
Setup 5 are satisfied. Note that in this case Db(E) = perf-Λ.



4 STEFFEN OPPERMANN AND JAN ŠŤOVÍČEK

Proposition 9. Let X be a projective scheme over a commutative noetherian
ring R. Then for A = cohX and E = vectX, the subcategory of all locally
free coherent sheaves (also known as vector bundles), the assumptions of
Setup 5 are satisfied.

Before proving the proposition, we shortly discuss a technical issue. In
the literature, the groups Exti(X ,Y), where X ,Y ∈ cohX, are considered
in various categories. We can take the Yoneda Ext in the category of all
sheaves of OX-modules, in the category of quasi-coherent sheaves, or in the
category of coherent sheaves. It turns out that under suitable assumptions,
the base category does not matter. Here we outline for convenience of the
reader and also for future reference how to pass from QcohX to cohX. First
a definition:

Definition 10. Given a Grothendieck category B, we call an object B ∈ B
finitely presentable if the functor HomB(B,−) : B → Ab commutes with
direct limits. The category B is called locally coherent if the full subcategory
fp(B) of finitely presentable objects of B is an abelian subcategory, and each
C ∈ B is a direct limit of objects from fp(B).

Then we have the following well-known lemma:

Lemma 11. Given any skeletally small abelian category A, there is a locally
coherent Grothendieck category B and a fully faithful exact functor H : A →
B, which induces an equivalence A → fp(B). Moreover, such B is unique
up to equivalence and the canonical functor D−(A) → D(B), where D(B)
stands for the unbounded derived category of B, is fully faithful.

Proof. For the existence of H : A → B and the uniqueness of B, we refer
to [7, §§1.4 and 2.4]. Abusing notation as usual, we will identify A with the
essential image of H. For the last part, note that given any complex M ∈
C(B) whose homologies H i(M) belong to A for all i ∈ Z and vanish for i�
0, one can, using standard arguments, construct a quasi-isomorphism X →
M with X ∈ C−(A). It easily follows that D−(A)→ D(B) is fully faithful (a
more detailed argument in a different context will be given Lemma 14). �

Getting back to our situation, note that if X is a projective scheme over
a commutative noetherian ring and A = cohX, we can take B = QcohX
and for H the obvious inclusion. One can infer this from results in [9, §II.5]
and especially from [9, Proposition II.5.15]. Now, a direct consequence of
Lemma 11 is that ExtiA(X ,Y) ∼= ExtiB(X ,Y) for each X ,Y ∈ A and i ≥ 0.

Proof of Proposition 9. Note that by assumption X = Proj R[X1,...,Xn]
I for

some n and some homogeneous ideal I. The second point of Setup 5 is
immediate and the third follows from [9, Proposition II.5.15] and the fact

that sheaves associated to free graded R[X1,...,Xn]
I -modules are locally free.

For the first point, one has H i(X,Y) ∈ mod-R for any Y ∈ cohX by [9,
Theorem III.5.2], where H i(X,Y) is the sheaf cohomology as in [9, §III.2].
By [9, Proposition III.6.3], we have H i(X,Y) ∼= Exti(OX,Y) for each i ≥ 0,
where the Ext groups are taken in the category of sheaves of OX-modules.
Inspecting [9, Exercise III.3.6], one concludes that for noetherian schemes
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the same isomorphisms hold when the Ext-groups are taken in the category
QcohX (see also [9, Proposition III.2.5]). Next, Lemma 11 tells us that also

ExticohX(OX,Y) ∼= H i(X,Y) ∈ mod-R for each Y ∈ cohX and i ≥ 0.

Using a version of [9, Proposition III.6.7] for quasi-coherent sheaves, we
obtain for each i ≥ 0, L ∈ vectX and Y ∈ cohX:

ExticohX(L,Y) ∼= ExticohX(OX,L∨ ⊗ Y) ∈ mod-R.

Taking into account that the vector bundles generate cohX, we will show
by induction on i ≥ 0 that ExticohX(X ,Y) ∈ mod-R for every X ,Y ∈ cohX.
Namely, fix any short exact sequence

0→ K → L → X → 0

with L locally free and apply HomcohX(−,Y). If i = 0, the exact sequence

0→ HomcohX(X ,Y)→ HomcohX(L,Y)

provides evidence that HomcohX(X ,Y) is a finitely generated R-module. For
i > 0, consider the exact sequence

Exti−1
cohX(K,Y)→ ExticohX(X ,Y)→ ExticohX(L,Y).

Then Exti−1
cohX(K,Y) ∈ mod-R by the inductive hypothesis and we know that

ExticohX(L,Y) ∈ mod-R by the argument above. Hence ExticohX(X ,Y) is a
finitely generated R-module as well.

Finally by equality of Čech cohomology and sheaf cohomology, [9, Theo-
rem III.4.5], one easily sees that H i ≡ 0 for i > n. Thus by the isomorphisms
above, the final point of Setup 5 is satisfied. �

3. Products and cocompact objects in D−(A)

In order to prove the main results in Section 4, we first need to show
that D−(A) has certain products of infinite families of objects, and to char-
acterize cocompact objects in D−(A). We explain the latter concept in
Definition 17.

As long as we are concerned with the abelian category of complexes
C−(A), the situation with products and coproducts is easy. If a family
of complexes (Xi | i ∈ I) has a product or a coproduct, it is computed
componentwise. This easily follows for instance from the adjoint formulas
in [8, Lemma 3.1]. It is an immediate observation that products and coprod-
ucts of the following (in general countably infinite) families always exist and
coincide:

Definition 12. We say that a family (Xi | i ∈ I) of complexes from C−(A)
is descending provided the following conditions are satisfied:

(1) There is N ∈ Z such that Xi ∈ C≤N (A) for each i ∈ I.
(2) For each n ∈ Z, there are only finitely many indices i ∈ I such that

the n-th component of Xi is non-zero.

In fact, since we assume that A is a Hom-finite category over a noetherian
ring, it is not difficult to see that any family (Xi | i ∈ I) which has a product
or coproduct in C−(A) must be descending.



6 STEFFEN OPPERMANN AND JAN ŠŤOVÍČEK

A little more tricky point is to see that we can compute products and
coproducts of descending families in this way also in D−(A). For coproducts,
the situation is still covered by classical results. Namely, by Lemma 11,
we can embed A into a locally coherent Grothendieck category B so that
D−(A)→ D(B) is fully faithful. Since coproducts in B are exact, coproducts
of quasi-isomorphisms are quasi-isomorphisms again. Using this fact one
easily sees that coproducts in D(B) are computed componentwise. It follows
that the coproduct of a descending family of complexes from D−(A) belongs
to D−(A) again.

Unfortunately, one cannot simply give a dual argument for products since
products in B are in general not exact. For instance, the exactness is well-
known to fail for B = Qcoh(P1

C); see [12, Example 4.9]. However, using fully
the assumptions in Setup 5, we still can prove:

Proposition 13. If (Xi | i ∈ I) is a descending family of complexes of
D−(A), then the componentwise product of the family is a product in the
category D−(A).

On the other hand, if
∏
i∈I Xi exists in D−(A) for some family (Xi | i ∈

I), then there is a family (X ′i | i ∈ I) of isomorphic complexes in D−(A)
such that (X ′i | i ∈ I) is a descending family.

We need a to prove a few lemmas first. We begin by describing the
relations between the derived categories of E and A. Here we consider
E as an exact category with the exact structure induced from A, so quasi-
isomorphisms between complexes over E are those chain complex morphisms
whose mapping cones are acyclic in E .

Lemma 14. In the following diagram with the canonical functors, all the
functors are fully faithful and the upper one is a triangle equivalence:

D−(E) −−−−→ D−(A)x x
Db(E) −−−−→ Db(A)

Proof. Note that since E is generating in A, for any complex M in C−(A)
there is a quasi-isomorphismX →M withX ∈ C−(E); see [10, Lemma I.4.6].
Hence the upper horizontal functor is essentially surjective.

To see that the upper horizontal functor is fully faithful, let X,Y ∈
C−(E), and let f ∈ HomD−(A)(X,Y ). Then f is represented by a right frac-

tion gσ−1, where σ is a quasi-isomorphism. That is, there is M ∈ C−(A)
such that gσ−1 is in the upper row of the following diagram.

X M
qis

σoo g // Y

Z

qisτ

OO

Now there exists a quasi-isomorphism τ from Z ∈ C−(E) to M by the
discussion above, and we have

f = gσ−1 = (gτ)(στ)−1 ∈ HomD−(E)(X,Y ).
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Similarly one sees that if a map vanishes in D−(A), then it already vanishes
in D−(E), whence the upper horizontal functor is faithful.

To see that the left vertical functor is fully faithful, note that for any
quasi-isomorphism Y → M with Y ∈ Cb(E) and M ∈ C−(E), there is a
quasi-isomorphism τ : M → W with W ∈ Cb(E) (given by truncation in
C−(A) – this is possible since E is closed under kernels of epimorphisms
in A). Hence for each left fraction f = σ−1g ∈ HomD−(E)(X,Y ) with

X,Y ∈ Db(E) we have σ−1g = (τσ)−1(τg) ∈ HomDb(E)(X,Y ). One also

easily checks that σ−1g vanishes in HomD−(E)(X,Y ) if and only if it vanishes
in HomDb(E)(X,Y ).

The fact that the right vertical functor is fully faithful is classical (and can
be seen similarly). It follows from the diagram that also the lower horizontal
functor is fully faithful. �

Therefore, it suffices to prove the existence of products of descending
families in D−(E). Here we aim to exploit the fact that by Setup 5(4) and
in view of Remark 6, E has finite global dimension as an exact category. Let
us first establish a basic property of Yoneda Ext-groups in E .

Lemma 15. Assume we have n ≥ 1 and two exact sequences

εi : 0→ Y → E1,i → E2,i → · · · → En,i → X → 0 (i = 1, 2)

in E such that [ε1] = [ε2] in ExtnE(X,Y ). Then there is a commutative
diagram of the following form with rows exact in E and inflations in all
columns:

ε1 : 0 // Y // E1,1 //
��

��

E2,1 //
��

��

. . . // En,1 //
��

��

X // 0

η : 0 // Y // F1
// F2

// . . . // Fn // X // 0

ε2 : 0 // Y // E1,2 //
OO

OO

E2,2 //
OO

OO

. . . // En,2 //
OO

OO

X // 0

Proof. Since [ε1] = [ε2], there is by definition a finite collection η0, . . . , ηm
of exact sequences in E with n middle terms together with morphisms

η1 η3 ηm−1

ε1 = η0

??������
η2

__??????

??������
η4

__??????

??�������
...

ηm−2

__???????

??������
ηm = ε2,

__??????

such that the components at X and Y are the identity morphisms.
First note that the chain of morphisms can be taken so that all compo-

nents in the morphisms are inflations. Indeed, we can replace each morphism

ηi±1 :

f

��

0 // Y // F1
//

��

F2
//

��

. . . // Fn //

��

X // 0

ηi : 0 // Y // F ′1
// F ′2

// . . . // F ′n
// X // 0
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by the morphism f ′ = (f, q2, . . . , qn)t : ηi±1 → ηi ⊕ ξ2 ⊕ · · · ⊕ ξn, where q`
stands for the morphism

ηi±1 :

q`
��

0 // Y //

��

. . . // F`−1
//

��

F` // . . . // X //

��

0

ξ` : 0 // 0 // . . . // F`
1F` // F` // . . . // 0 // 0

Of course, if for a fixed i we do such a substitution for f : ηi−1 → ηi, we
must also replace the original adjacent morphism g : ηi+1 → ηi by g′ =
(g, 0, . . . , 0)t : ηi+1 → ηi ⊕ ξ2 ⊕ . . . ξn. Similarly, if we replace the morphism
ηi+1 → ηi, we must correspondingly change ηi−1 → ηi. However, this does
not pose any problem since if (in the notation above) g is an inflation, so
will be g′.

Now, if m = 2, we are done. If m > 2, we construct the pushout diagram

η̃

η1

??������
η3

__??????

η2

__??????

??������

and replace the original chain of morphisms by

η̃ ηm−1

ε1 = η0

??������
η4

__??????

??�������
...

ηm−2

__???????

??������
ηm = ε2.

__??????

After finitely many repetitions, we reduce the length of the chain to two. �

Next we prove a crucial lemma about left fractions in D−(E).

Lemma 16. Let d = gldim E, N ∈ Z, and f : Y → X be a morphism in
D−(E) such that X ∈ D≤N (E). Then f can be represented by a fraction

Z

Y

g
??~~~~~~~

X

σ

qis

``@@@@@@@

with Z ∈ D≤N+d(E).

Proof. Let us take any left fraction τ−1g′ representing f , where τ : X →W
is a quasi-isomorphism, and suppose that W ∈ D≤N+d′(E) for some integer
d′ > d. Since H i(X) = 0 for all i > N when considering X as a complex in
D−(A), the sequence

ε1 : 0→ ZN (W )→WN → · · · →WN+d′−1 →WN+d′ → 0

is exact in A. Using the assumption of Setup 5(2) that E is closed under
kernels of epimorphisms in A, we get Zi(W ) ∈ E for all i ≥ N . We can

view ε1 as a representative of an element of Extd
′
E
(
WN+d′ , ZN (W )

)
. Now

the equivalence class of ε1 must vanish in Extd
′
E
(
WN+d′ , ZN (W )

)
since d′ >
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d = gldim E . Using Lemma 15 for ε1 and any ε2 in which the last morphism
onto WN+d′ splits, we obtain a commutative diagram in E of the form

0 // ZN (W ) // WN //
��

j1
��

. . . // WN+d′−1 //
��

jd′

��

WN+d′ // 0

0 // ZN (W ) // F1
// . . . // Fd′

q // WN+d′ // 0,

where the rows are exact and q splits. Thus the inflation k : Ker q → Fd′
splits and there is a morphism r : Fd′ → Ker q such that rk = 1Ker q. The
chain complex morphism υ : W →W ′ defined by the diagram

. . . // WN−1 // WN //
��

j1
��

. . . // WN+d′−2 //
��

jd′−1

��

WN+d′−1 //
��

rjd′
��

WN+d′

��

// . . .

. . . // WN−1 // F1
// . . . // Fd′−1

// // Ker q // 0 // . . .

is a quasi-isomorphism in D−(E) since it is a quasi-isomorphism in D−(A),
and since the natural functor from D−(E) to D−(A) is an equivalence by
Lemma 14. It follows τ−1g′ = (υτ)−1υg′ in HomD−(E)(Y,X) and the middle

term W ′ of the latter fraction belongs to D≤N+d′−1(E). After repeating the
procedure finitely many times, we obtain an equivalent fraction with middle
term in D≤N+d(E). �

Now we are in a position to prove the existence of products.

Proof of Proposition 13. Assume first we have a descending family (Xi | i ∈
I) of objects of D−(E). Let fi : Y → Xi be any collection of morphisms. By
Lemma 16 we can represent these by fractions

Zi

Y

gi
??~~~~~~~~

Xi

σi

qis

``AAAAAAAA

such that (Zi | i ∈ I) is a descending family. Hence we can construct the
product morphism f : Y →

∏
i∈I Xi as the fraction∏

Zi

Y

(gi)
==|||||||| ∏

Xi.

∏
σi

qis

ccGGGGGGGGG

Here,
∏

denotes the componentwise products. It is straightforward to show
that this product morphism is unique. Thus we have shown that the com-
ponentwise product of a descending family in D−(E) is its product.

If (Xi | i ∈ I) is a descending family in D−(A), [10, Lemma I.4.6] yields for
each i ∈ I a quasi-isomorphism τi : X

′
i → Xi with X ′i ∈ D−(E). Moreover,

we can take the morphisms so that (X ′i | i ∈ I) is a descending family.
Clearly, the componentwise product

∏
τi is a quasi-isomorphism, so the

componentwise product
∏
Xi is really a product in D−(A) by Lemma 14.

Conversely, let us assume that (Xi | i ∈ I) is a family of objects of D−(A)
such that the product

∏
i∈I Xi exists in D−(A). First we show that there
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is some N ∈ Z such that Hn(Xi) = 0 for each n ≥ N and i ∈ I. Indeed,
if for arbitrarily large numbers n there were i ∈ I such that Hn(Xi) 6= 0,
it would mean (given the fact that Hn : D−(A)→ A are additive functors)
that Hn(

∏
Xi) 6= 0 for arbitrary large n. This is absurd.

It remains to check that (up to isomorphism) the family (Xi | i ∈ I)
satisfies the second point of Definition 12. Let us by way of contradiction
assume that there is n ∈ Z such that Hn(Xim) 6= 0 for infinitely many
indices i1, i2, i3, . . . . Then the chain of split epimorphisms∏

i∈I
Xi →

∏
i∈I\{i1}

Xi →
∏

i∈I\{i1,i2}

Xi → . . .

yields a chain of proper split epimorphism

Hn(
∏
i∈I

Xi)→ Hn(
∏

i∈I\{i1}

Xi)→ Hn(
∏

i∈I\{i1,i2}

Xi)→ . . .

in A. Applying HomA
(
Hn(

∏
i∈I Xi),−

)
gives us an infinite chain of proper

split epimorphisms between finitely generated R-modules, which is impos-
sible. Therefore, for each n ∈ Z there are only finitely many indices i ∈ I
such that Hn(Xi) 6= 0 and it is easy to see that (Xi | i ∈ I) can be replaced
by an isomorphic family (X ′i | i ∈ I) which is descending. �

If we have an additive category T with some infinite coproducts, we can
consider compact objects. These are defined as those Y ∈ T for which
HomT (Y,−) commutes with all coproducts which exist in T , and they play
a very important role in the theory of triangulated categories (see for in-
stance [14]). In this paper, the dual concept is relevant:

Definition 17. Let T be an additive category. An object Y ∈ T is co-
compact if Y is compact in the opposite category T op. That is, given any
family (Xi | i ∈ I) of objects of T such that the product

∏
i∈I Xi exists in

T (and so the coproduct
∐
i∈I Xi exists in T op), then the canonical group

homomorphism ∐
i∈I

HomT (Xi, Y )→ HomT
(∏
i∈I

Xi, Y
)

is an isomorphism. Equivalently, we can say that Y is cocompact if any
morphism f :

∏
i∈I Xi → Y in T factors through the canonical projection∏

i∈I Xi →
∏
i∈J Xi for some finite subset J ⊆ I.

The main result of this section, which is crucial for the next section, is
the following characterization of cocompact objects in D−(A).

Theorem 18. Assume Setup 5. Then an object Y ∈ D−(A) is cocompact
if and only if Y is isomorphic to a bounded complex over A.

Proof. For the if-part, assume that Y is a bounded complex and N is an
integer such that Y ∈ D≥N (A). If (Xi | i ∈ I) is a family of complexes
in D−(A) which has a product, it is up to isomorphism a descending fam-
ily by Proposition 13. Then, however, all but finitely many Xi belong to
D≤N−1(A) and so does their product. Using the well-known fact that

HomD−(A)

(
D≤N−1(A),D≥N (A)

)
= 0,
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every morphism f :
∏
i∈I Xi → Y factors through the finite product

∏
i∈J Xi

formed by those Xi which are not isomorphic to a complex in D≤N−1(A).
Conversely, assume that Y is cocompact in D−(A) and fix N ′ such that

Y ∈ D≤N
′
(A). Consider for each i ≤ N ′ the obvious morphism fi : Z

i(Y )[−i]→
Y . By Proposition 13, the product

∏
Zi(Y )[−i] exists in D−(A) and is

computed componentwise. Since we assume that Y is cocompact, all but
finitely many fi must vanish in D−(A), which easily implies that Y has
only finitely many non-zero homologies. In particular, Y is isomorphic to a
bounded complex. �

4. Main results

Definition 19. Given M ∈ D−(A), we say that a morphism f : X → Y is
a (covariant) M -ghost provided

HomD−(A)(f,M [i]) = 0 for each i ∈ Z.

The class of all covariant M -ghosts in D−(A) will be denoted by GM .

Remark 20. Dually one can define contravariant ghosts. In many papers only
contravariant ghosts are considered (and then they are just called ghosts).
However in our setup it is more convenient to work with covariant ghosts.

The notion of ghosts is closely related to a more general representation-
theoretic notion of approximations.

Definition 21. Let T be a category and C ⊆ T be a full subcategory. A
morphism g : Y → C in T is called a left C-approximation of Y if C ∈ C and
any morphism g′ : Y → C ′ with C ′ ∈ C factors through f . The subcategory
C is said to be covariantly finite in T provided that every Y ∈ T admits
some left C-approximation g : Y → C.

To be more specific about the relation between ghosts and approxima-
tions, observe that given Z ∈ 〈M〉 and a triangle

X
f // Y

g // Z // X[1] ,

then f is a covariant M -ghost if and only if g is a left 〈M〉-approximation.
The Ghost Lemma relates M -ghosts and objects in 〈M〉n:

Lemma 22 (Ghost Lemma – see for instance [2, Lemma 2.2]). Let X and
M ∈ D−(A).

(1) If X ∈ 〈M〉n then (GM )n(−, X) = 0.
(2) If 〈M〉 is covariantly finite in D−(A) then the converse holds.

Remark 23. (1) The Ghost Lemma holds for any triangulated category,
not just D−(A).

(2) First versions of the Ghost Lemma have appeared in [11, 17, 6].
More recently published versions include [1, Corollary 5.5] and [15,
Lemma 4.11].

One main result of this paper, showing the converse of the Ghost Lemma
in our setup without having covariant finiteness, is as follows:
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Theorem 24. Let E ⊆ A be as in Setup 5, and fix X,M ∈ Db(A) and
n ≥ 0. Then the following are equivalent:

(1) X ∈ 〈M〉n,
(2) (GM )n(−, X) = 0,
(3) (GM|Db(A))

n(−, X) = 0,

(4) HomD−(A)(D
b(E), X) ◦ (GM|Db(E))

n = 0.

Before proving the theorem, we introduce some notation and make a
simple observation. For a complex Y ∈ D−(A), we denote by τ≥iY the
complex given by

(τ≥iY )j =

{
Y j for j ≥ i
0 otherwise

,

and similarly for τ≤iY . The complexes τ≥iY and τ≤iY are called brutal
truncations of Y . Note that for any Y ∈ D−(E) and any i ∈ Z there is a
triangle

τ≥iY // Y // τ≤i−1Y // τ≥iY [1] .

Lemma 25. Let X ∈ Db(A) and Y ∈ D−(A). Then for i � 0, the
morphism τ≥iY → Y yields an isomorphism

HomD−(A)(Y,X)
∼=−→ HomD−(A)(τ

≥iY,X).

Proof. Invoking again the fact that HomD−(A)

(
D≤i−1(A),D≥i(A)

)
= 0,

observe that

HomD−(A)(τ
≤i−1Y,X) = 0 = HomD−(A)(τ

≤i−1Y,X[1])

for i � 0. The statement immediately follows from the existence of the
triangles τ≥iY → Y → τ≤i−1Y → τ≥i[1]. �

Now we return to the proof of the theorem.

Proof of Theorem 24. (1) =⇒ (2) is the usual Ghost Lemma (Lemma 22(1)).
(2) =⇒ (3) and (3) =⇒ (4) are trivial.
(4) =⇒ (2). Assume, conversely to (2), that we have a non-zero compo-

sition

Xn
// Xn−1

// . . . // X1
// X

of M -ghosts in D−(E) (since D−(E) ∼= D−(A); here we replace X by an
isomorphic object which lies in D−(E)). Possibly replacing the Xi by iso-
morphic objects we may assume that the maps above are represented by
chain complex morphisms (rather than fractions).

We reduce this chain inductively to a non-zero composition of M -ghosts
in Db(E).

First we use Lemma 25 to truncate Xn so that HomD−(A)(τ
≥inXn, X) ∼=

HomD−(A)(Xn, X). In particular, the induced map from τ≥inXn to X is
still non-zero.



BOUNDED DERIVED CATEGORY AND PERFECT GHOSTS 13

Now note that for i ≤ in we obtain an induced map τ≥inXn
// τ≥iXn−1

making the following diagram commutative.

Xn
// Xn−1

// . . . // X1
// X0

τ≥inXn

OO

// τ≥iXn−1

OO

We want this map τ≥inXn
// τ≥iXn−1 to also be an M -ghost. Set

J = {j ∈ Z | HomDb(A)(τ
≥inXn,M [j]) 6= 0}.

Note that HomDb(A)(τ
≥inXn,M [j]) = 0 for j � 0, and by Lemma 16 also

for j � 0, so the set J is finite. Now, using Lemma 25 one sees that for
i� 0 we have

HomD−(A)(τ
≥iXn−1,M [j]) ∼= HomD−(A)(Xn−1,M [j]) ∀j ∈ J.

Hence, since the map τ≥inXn
// Xn−1 is an M -ghost, there is in−1 such

that the map τ≥inXn
// τ≥in−1Xn−1 also is an M -ghost.

Going on inductively, we construct a commutative diagram

Xn
// Xn−1

// . . . // X1
// X

τ≥inXn

OO

// τ≥in−1Xn−1

OO

// . . . // τ≥i1X1

OO

// τ≥i0X

OO

such that the objects below belong to Db(E), all horizontal morphisms are
M -ghosts, and the composition from the left lower to the right upper corner
of the diagram is non-zero. This is exactly the kind of sequence of M -ghosts
claimed to not exist in (4).

(2) =⇒ (1). We will show that in D−(A) we have X ∈ 〈Prod〈M〉〉n,
where Prod〈M〉 denotes the category whose objects are products of objects
in 〈M〉, and then use a compactness argument from [4] to get X ∈ 〈M〉n.

To this end, we first claim that Prod〈M〉 is covariantly finite in D−(A).
That is, we must construct a left Prod〈M〉-approximation for any fixed
Y ∈ D−(A). Notice that given any i ∈ Z, HomD−(A)(Y,M [i]) is a finitely

generated R-module. Indeed, HomD−(A)(Y,M [i]) ∼= HomD−(A)(τ
≥`Y,M [i])

for `� 0 by Lemma 25, and the latter is a finitely generated R-module by
Setup 5(1). Having fixed any collection gi,1, . . . , gi,ai : X → M [i] of genera-
tors of that R-module (for a suitable ai ≥ 0), it is a well-known and easily
checked fact that the morphism

gi = (gi,1, . . . , gi,ai)
t : Y −→M [i]ai

is a left addM [i]-approximation of Y . Recall further that HomD−(A)(Y,M [i]) =
0 for i � 0, so that we can take ai = 0 for i � 0. Therefore, the product∏
i∈ZM [i]ai exists in D−(A) and it is computed componentwise (see Propo-

sition 13). A little more standard checking, using the universal property of
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products, shows that the morphism

g : Y −→
∏
i∈Z

M [i]ai ,

whose components are the above defined maps gi : Y → M [i]ai , is a left
Prod〈M〉-approximation of Y . This finishes the proof of the claim.

Now it follows that X ∈ 〈Prod〈M〉〉n by essentially the same arguments
as used for Lemma 22(2). We quickly recall them for the convenience of the
reader.

First construct a sequence of triangles

X −→
∏
i∈Z

M [i]ai −→ X1
f1−→ X[1]

X1 −→
∏
i∈Z

M [i]bi −→ X2
f2−→ X1[1],

...

Xn−1 −→
∏
i∈Z

M [i]zi −→ Xn
fn−→ Xn−1[1],

where the leftmost morphisms are left Prod〈M〉-approximations. It follows
that the rightmost morphisms, labeled fi, are M -ghosts.

Now, using the octahedral axiom, one sees that the cone of f1[−1]◦f2[−2]
is an extension of

∏
i∈ZM [i]ai and

∏
i∈ZM [i−1]bi , and thus in 〈Prod〈M〉〉2.

Iterating this one sees that the cone of f1[−1] ◦ f2[−2] ◦ · · · ◦ fn[−n] lies in
〈Prod〈M〉〉n. But f1[−1] ◦ f2[−2] ◦ · · · ◦ fn[−n] ∈ (GM )n(Xn[−n], X) = 0.
So this triangle splits, and X ∈ 〈Prod〈M〉〉n.

Finally recall that M and X are cocompact in D−(A) by Theorem 18.
Thus X ∈ 〈M〉n follows from (the dual of) [4, Proposition 2.2.4]. �

Now we are able to prove our result on strongly finitely generated cate-
gories between Db(E) and Db(A).

Proof of Theorem 7. Let T be a strongly finitely generated category, such

that Db(E) ⊆ T
thick
⊆ Db(A). Let T be a strong generator, that is there is

n ∈ Z such that T = 〈T 〉n.
Since Db(E) ⊆ T in particular we have E ∈ 〈T 〉n for any E ∈ Db(E).

Hence, by Theorem 24((1) =⇒ (4)), we have that (GM|Db(E))
n(−, E) = 0

for any such E, and therefore (GM|Db(E))
n = 0.

Now let X ∈ Db(A) arbitrary. Then, by Theorem 24((4) =⇒ (1)), we
have X ∈ 〈T 〉n = T . It follows that T = Db(A). �

We conclude this paper with a consequence of Theorem 2(1), describing
how the 〈−〉i grow in the case of noetherian algebras.

Corollary 26. Let Λ be a noetherian algebra. For M ∈ Db(mod-Λ) either
the inclusions

〈Λ⊕M〉1 ⊆ 〈Λ⊕M〉2 ⊆ 〈Λ⊕M〉3 ⊆ · · ·

are all proper, or 〈Λ⊕M〉n = Db(mod-Λ) for some n.
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