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Abstract. We compute Hochschild cohomology and Hochschild
homology for arbitrary finite dimensional quantum complete inter-
sections. It turns out that their behaviour varies largely, depending
on the choice of commutation parameters, and we will give precise
criteria when to expect what behaviour.

1. Introduction

Quantum complete intersections first appear in the work of Avramov,
Gasharov, and Peeva [1]. Based on the introduction of quantized ver-
sions of polynomial rings by Manin [6] they introduced the notion of
quantum regular sequences.

In this paper we restrict to finite dimensional quantum complete
intersections, that is algebras of the form k〈x1, . . . , xc〉 /I, where I is
an ideal generated by xni

i for some ni ∈ N≥2, and xjxi − qijxixj for
some commutation parameters qij from the multiplicative group of the
field.

In particular in the case of two variables it has been observed that
the homological behaviour of finite dimensional quantum complete in-
tersections varies greatly depending on the commutation parameters:

Buchweitz, Green, Madsen, and Solberg [5] have given a finite di-
mensional quantum complete intersection as the first example of an
algebra of infinite global dimension which has finite Hochschild coho-
mology. This has been generalized by Bergh and Erdmann [2], who
have shown that a finite dimensional quantum complete intersection
of codimension 2 (that is c = 2 in the description above) has infinite
Hochschild cohomology if and only if the commutation parameter is a
root of unity.

On the other hand, Bergh and the author [3] have shown that in
the situation that all commutation parameters are roots of unity, the
Hochschild cohomology of a quantum complete intersection is as well
behaved as in the commutative case: It is a finitely generated k algebra,
and any Ext∗(M,N) for any finite dimensional modules M and N over
the quantum complete intersection is finitely generated as a module
over the Hochschild cohomology ring.

The author was supported by NFR Storforsk grant no. 167130.
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2 Hochschild (co)homology

In this paper we give a general description of Hochschild cohomology
and homology of finite dimensional quantum complete intersections.

In Theorems 3.4 and 7.4 we explicitly determine a k-basis for the
Hochschild cohomology and homology, respectively.

Using these results we study the size of the Hochschild cohomology
and homology in the following sense: We denote by

γ(HH∗(Λ)) = inf{t ∈ N | lim sup
dimk HHn(Λ)

nt−1
<∞}

the rate of growth of Hochschild cohomology (and similar for Hochschild
homology). We obtain explicit combinatorial formulas for γ(HH∗(Λ))
and γ(HH∗(Λ)) in Theorems 4.5 and 8.2, respectively. In particular it
will be shown (as Corollary 4.6) that whenever not all commutation
parameters are roots of unity we have γ(HH∗(Λ)) ≤ c − 2. For c = 2
that means that the Hochschild cohomology is finite. This explains
why there are essentially only two cases for c = 2, while we obtain
more different behaviour for larger c.

We will also generalize Bergh’s and Erdmann’s result ([2]) in another
way: It will be shown that whenever the commutation parameters are
sufficiently generic the Hochschild cohomology of the quantum com-
plete intersection is finite (see Example 6.2).

Finally we will study the multiplicative structure of the Hochschild
cohomology ring. It will turn out (Theorem 5.5) that it always con-
tains a subring S which is finitely generated over k, and isomorphic to
the quotient of Hochschild cohomology modulo its nilpotent elements.
We will give a criterion when the entire Hochschild cohomology ring is
finitely generated over this subring (Theorem 5.9). We will give exam-
ples (6.4 and 6.5) that all the following behaviors occur (for c ≥ 3):

• S = k, but γ(HH∗(Λ)) = c− 2,
• γ(S) = γ(HH∗(Λ)) = c − 2, and HH∗(Λ) is finitely generated

over S, and
• γ(S) = γ(HH∗(Λ)) = c−2, but HH∗(Λ) is not finitely generated

over S.

2. Notation and background

Throughout this paper we assume k to be field.

Quantum complete intersections. (see also [2, 3, 4])
A finite dimensional quantum complete intersection of codimension

c is a k-algebra of the form

Λn
q =

k〈x1, . . . , xc〉(
xni

i for 1 ≤ i ≤ c
xjxi − qijxixj for 1 ≤ i < j ≤ c

)
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with n = (n1, . . . , nc) ∈ Nc
≥2 and q = (qij | i < j) ∈ (k×)

n(n−1)
2 , where

k× denotes the multiplicative group k\{0}. For convenience of notation
we also define qij for i ≥ j: We set qii = 1 for any i ∈ {1, . . . , c} and
qij = q−1

ji for 1 ≤ j < i ≤ c. Note that the relations xjxi − qijxixj for
1 ≤ j ≤ i ≤ c are automatically satisfied in Λn

q.
Note that Λn

q is a Zc-graded algebra by |xi| = degree(xi) = ei, the
i-th unit vector. We will denote by ≤ the partial order on Zc defined by
comparing vectors component wise, and by 1 =

∑
ei the vector with 1

in every component. With this notation we have that the dimensions
of the graded component of degree d (with d ∈ Zc) is

dim(Λn
q)d =

{
1 if 0 ≤ d ≤ n− 1
0 otherwise.

For a ∈ Nc (here N denotes the non-negative integers, i.e. includes
0) we will write xa = xa1

1 · · ·xac
c . Note that the multiplication yields

something different if we multiply in another order. In particular we
do not have xaxb = xa+b. By setting

q〈a|b〉 =
∏

i,j∈{1...c}
i<j

q
ajbi

ij

we obtain the multiplication formula xaxb = q〈a|b〉xa+b.

Hochschild (co)homology. Let Λ be a finite dimensional algebra.
We set Λen = Λ⊗k Λop the enveloping algebra. Then Λen-modules are
Λ-Λ bimodules on which k acts centrally. In particular Λ has a natural
structure of a Λen-module. Then

HH∗(Λ) = Ext∗Λen(Λ,Λ) and

HH∗(Λ) = TorΛen

∗ (Λ,Λ)

are the Hochschild cohomology and Hochschild homology of Λ respec-
tively. With the Yoneda multiplication of extensions HH∗ becomes a
Z-graded k-algebra, which is graded commutative (see [7]).

Note that if Λ is graded then so is Λen, and Λ is a graded Λen-module.
It follows that for any i ∈ N the Hochschild homology and cohomology
groups HHi(Λ) and HHi(Λ) are also graded.

Projective resolutions. In order to determine the Hochschild ho-
mology and cohomology of a quantum complete intersection Λ = Λn

q

we need to find a projective resolution of Λ as Λen-module. Moreover
we want to keep track of the Zc-grading, so we will need a graded
projective resolution.

It has been shown in [3, Lemma 4.5] that we can find such a graded
projective resolution by tensoring together the projective resolutions
of the k[xi]/(x

ni
i ) as (k[xi]/(x

ni
i ))en modules. To simplify notation we
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set Λi = k[xi]/(x
ni
i ). Then the graded projective resolution of Λi as a

bimodule is

Pi : Λen
i
�xi⊗1−1⊗xi

Λen
i 〈1〉 �

Pni−1

k=0 xk
i⊗x

ni−1−k
i Λen

i 〈ni〉 �
xi⊗1−1⊗xi

Λen
i 〈ni + 1〉 � · · · ,

where Λen
i 〈s〉 is the graded module obtained from Λen

i by increasing the
degree of all homogeneous elements by s. Note that here all the bi-
modules are shifted into place such that all the morphisms have degree
0.

With this notation by [3, Lemma 4.5] we have that the total complex

Tot(P1 ⊗k P2 ⊗k · · · ⊗k Pc)

is a graded projective resolution of Λ.
Note that the term in position p ∈ Nc of the c-tuple complex P1 ⊗k

P2 ⊗k · · · ⊗k Pc is

Λen
1

〈
p1

2
n1 if 2 | p1

p1−1
2
n1 + 1 else

〉
⊗ · · · ⊗ Λen

c

〈
pc

2
nc if 2 | pc

pc−1
2
nc + 1 else

〉
.

To keep notation compact define the function s : Zc - Zc by

s(p)i =

{
pi

2
ni if 2 | pi

pi−1
2
ni + 1 else.

Moreover we will also need the following left inverse of the function s:

p : Zc - Zc

p(s) = min{p ∈ Zc | s(p) ≥ s}

In the c-tuple complex P1⊗k P2⊗k · · ·⊗k Pc all terms are of the form
Λen

1 〈s1〉 ⊗k · · · ⊗k Λen
c 〈sc〉 for some s ∈ Nc. We have to recall how these

are identified with Λen〈s〉.

2.1. Lemma ([3, Lemma 4.3]). For s ∈ Zc we may identify

Λen
1 〈s1〉 ⊗k · · · ⊗k Λen

c 〈sc〉 = Λen〈s〉 .

If we choose this identification such that

(1⊗ 1)⊗ · · · ⊗ (1⊗ 1) - 1⊗ 1,

then

(xa1
1 ⊗ xb1

1 )⊗ · · · ⊗ (xac
c ⊗ xbc

c ) -
q〈s|s〉

q〈a+s|b+s〉x
a ⊗ xb.

Of course the differentials occurring in the various directions of the c-
tuple complex are of particular interest. Therefore we note that under
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the identification of Lemma 2.1 we have

(1⊗ 1)⊗ · · · ⊗ (1⊗ 1)⊗ (xi ⊗ 1− 1⊗ xi)⊗ (1⊗ 1)⊗ · · · ⊗ (1⊗ 1)

7→ 1

q〈ei|s〉
xi ⊗ 1− 1

q〈s|ei〉
1⊗ xi and (2.1)

(1⊗ 1)⊗ · · · ⊗ (1⊗ 1)⊗ (

ni−1∑
j=0

xj
i ⊗ x

ni−1−j
i )⊗ (1⊗ 1)⊗ · · · ⊗ (1⊗ 1)

7→
ni−1∑
j=0

1

q〈jei|s〉q〈s|(ni−1−j)ei〉
xj

i ⊗ x
ni−1−j
i

=

ni−1∑
j=0

(
1

q〈ei|s〉

)j (
1

q〈s|ei〉

)ni−1−j

xj
i ⊗ x

ni−1−j
i . (2.2)

Technical notation. We need the following technical definitions to
keep notation short in the rest of the paper.

I – We set Q = (qij)ij, and think of Q as a (skew symmetric) matrix
with entries in the abelian group k×. That is, Q represents the
morphism of abelian groups

Q : Zc - (k×)c

(di)i
- (

c∏
j=1

q
dj

ij )i.

As usual for matrices we will denote the image of d ∈ Zc under
this map by Qd, and its i-th component by (Qd)i.

For A, B ⊆ {1, . . . , c} we denote by QA×B the submatrix
only containing the rows in A and the columns in B, that is the
matrix representing the composition

ZB ⊂ - Zc Q- (k×)c -- (k×)A.

II – We set

Ri =

{
{ζ | ζni = 1} if char k divides ni

{ζ | ζni = 1 and ζ 6= 1} else
.

III – For a Z-submodule K of Za we denote by pos.rkK the rank of
the Z-submodule K ′ of K generated by K ∩ Na. For example,

pos.rk
〈(

1
0
0

)
,
(

0
1
−1

)〉
= 1.

3. Hochschild cohomology

We wish to calculate for any d ∈ Zc the degree d part of the
Hochschild cohomology. Then we will obtain the entire Hochschild
cohomology by adding up these parts.
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In order to calculate the degree d part of cohomology we have to
first understand the set

Homd
Λen(Λen〈s〉 ,Λ)

of degree d morphisms from the terms of the projective resolution to
Λ.

3.1. Lemma. The set Homd
Λen(Λen〈s〉 ,Λ) is non-zero if and only if 0 ≤

s + d ≤ n − 1, and then it is the one dimensional k-vector space
generated by

ϕs,d : Λen〈s〉 - Λ

xa ⊗ xb - q〈a+s+d|b+s+d〉xa+s+d+b

Proof. Clearly any Λen-homomorphism from Λen〈s〉 to any other module
is uniquely determined by the image of 1⊗ 1. If the morphism is to be
of degree d then this image can only be a scalar multiple of xs+d. We
choose the image of 1⊗ 1 to be q〈s+d|s+d〉xs+d and obtain the formula
of the lemma by extending Λen-linearly. �

3.2. Corollary.

dim Homd
Λen(Λen〈s(p)〉 ,Λ) =

{
1 if p(−d) ≤ p ≤ p(−d) + 1
0 otherwise.

This means that for d ≤ n−1 the c-tuple complex Homd
Λen(P1⊗· · ·⊗

Pc,Λ) is concentrated in a cube (with sides of length 0 (in directions
i with p(−d)i = −1, i.e. di = ni − 1) or 1), where there is a one-
dimensional space in each corner of the cube.

Since by formulas (2.1) and (2.2) these are the terms occurring in
the projective resolution, we are in particular interested in what the
maps ϕs,d of Lemma 3.1 do to terms of the form

1

q〈ei|s〉
xi ⊗ 1− 1

q〈s|ei〉
1⊗ xi and

ni−1∑
j=0

(
1

q〈ei|s〉

)j (
1

q〈s|ei〉

)ni−1−j

xj
i ⊗ x

ni−1−j
i .

3.3. Lemma. Let s and d be such that 0 ≤ s + d ≤ n − 1, and let
i ∈ {1 . . . c}.

(1) Assume further that si + di + 1 < ni. Then

ϕs,d(
1

q〈ei|s〉
xi ⊗ 1− 1

q〈s|ei〉
1⊗ xi) = 0

if and only if (Qd)i = 1 (for the definition of Q see (I) at the
end of Section 2).
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(2) Assume further that si + di = 0. Then

ϕs,d(

ni−1∑
j=0

(
1

q〈ei|s〉

)j (
1

q〈s|ei〉

)ni−1−j

xj
i ⊗ x

ni−1−j
i ) = 0

if and only if (Qd)i ∈ Ri (for the definition of Ri see (II) at
the end of Section 2).

Proof. We only prove (2), the proof of (1) is a similar and simpler
straightforward calculation using the formula of Lemma 3.1. By Lemma 3.1
we have

ϕs,d(

ni−1∑
j=0

(
1

q〈ei|s〉

)j (
1

q〈s|ei〉

)ni−1−j

xj
i ⊗ x

ni−1−j
i )

=

ni−1∑
j=0

(
1

q〈ei|s〉

)j (
1

q〈s|ei〉

)ni−1−j

q〈jei+s+d|(ni−1−j)ei+s+d〉xs+d+(ni−1)ei

= q〈s+d|s+d〉
ni−1∑
j=0

(
q〈ei|d〉

)j (
q〈d|ei〉

)ni−1−j
xs+d+(ni−1)ei

= q〈s+d|s+d〉︸ ︷︷ ︸
6=0

xs+d+(ni−1)ei ·


ni

(
q〈ei|d〉

)ni−1︸ ︷︷ ︸
6=0

if q〈ei|d〉 = q〈d|ei〉

“
q〈ei|d〉

”ni−
“
q〈d|ei〉

”ni

q〈ei|d〉−q〈d|ei〉 otherwise

Now the claim follows from the fact that q〈d|ei〉

q〈ei|d〉 =
∏c

j=1 q
dj

ij = (Qd)i. �

We have shown that the vanishing of the maps on the edges in di-
rection i of the cube Homd

Λen(P1 ⊗ · · · ⊗ Pc,Λ) does not depend on s,
that is, if one edge in direction i vanishes, then all vanish. Note also
that if all the edges in one direction are isomorphisms, then the total
complex is acyclic. Hence we have shown

3.4. Theorem. Let Λ = Λn
q be a quantum complete intersection, and

let d ≤ n−1. We divide the set {1 . . . c} into the following three parts:

Imax = {i ∈ {1 . . . c} : di = ni − 1}
I1 = {i ∈ {1 . . . c} : ni | di + 1} \ Imax

I2 = {i ∈ {1 . . . c} : ni - di + 1}

Then HH∗,d(Λ) 6= 0 if and only if the following hold:

• for any i ∈ I1 we have (Qd)i ∈ Ri, and
• for any i ∈ I2 we have (Qd)i = 1.

In this situation HH∗,d(Λ) has the k-vector space basis

{Ed
p | 0 ≤ p and p(−d) ≤ p ≤ p(−d) + 1},



8 Hochschild (co)homology

where Ed
p is represented by the (degree d) map from the c-tuple complex

P1 ⊗ · · · ⊗ Pc to Λ (shifted to position p) sending 1 ⊗ 1 to xd+s(p) in
position p. In particular Ep

d has extension degree
∑c

i=1 pi. Note that
the assumptions on p just make sure that 0 ≤ d + s(p) ≤ n − 1, or,
in other words, that we are in the cube where Homd

Λen(P1⊗ · · · ⊗Pc,Λ)
does not vanish.

Let us now compare this result to the description of Ext∗Λ(k, k) ob-
tained in [3]. More precisely: tensoring over Λ with k yields a map
from Hochschild cohomology to the Ext-algebra of the Λ-module k.
Our aim now is to determine its image. By [3, Theorem 5.3] the latter
ring has the following form:

Ext∗Λ(k, k) =
k〈y1, . . . , yc, z1, . . . , zc〉
yjyi + qijyiyj for i 6= j
yjzi − qni

ij ziyj

zjzi − q
ninj

ij zizj

y2
i − zi if ni = 2
y2

i if ni 6= 2


,

where |yi| = (1,−ei) and |zi| = (2,−niei).

3.5. Corollary. With the above notation the image of the map (− ⊗Λ

k)∗ : HH∗(Λ) - Ext∗Λ(k, k) is⊕
d∈Zc such that

∀i with ni|di+1: (Qd)i∈Ri

∀i with ni-di+1: (Qd)i=1

Ext∗,d(k, k).

That is the sum runs over exactly those graded pieces, where the corre-
sponding graded piece of Hochschild cohomology does not vanish.

Proof. By construction the image cannot be bigger than the sum of the
corollary. To see that any Ext∗,d(k, k) with d as specified under the
sum is contained in the image first note that

dimk Ext∗,d(k, k) =

{
1 if ∀i : di ≤ 0 and ni | di ∨ ni | di + 1
0 else.

Note that the condition for Ext∗,d(k, k) not vanishing is equivalent to
asking that d = −s(p) for some p ∈ Nc. Now by definition Ed

p is
represented by a map sending 1 ⊗ 1 to 1 in position p, and hence it
does not vanish when being tensored over Λ by k. Therefore the image
is at least one dimensional in degree d. �

4. The rate of growth of Hochschild cohomology

In this section we study how big the Hochschild cohomology of a
finite dimensional quantum complete intersection is. Our way to mea-
sure the size is the rate of growth as explained in the following defini-
tion.
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4.1. Definition. Let X =
∐∞

i=0Xi be an N-graded k-module, such
that the Xi have finite k-dimension. The rate of growth of X, denoted
γ(X), is defined as

γ(X) = inf{t ∈ N | ∃a ∈ N such that dimk Xi ≤ ait∀i}.

Note that if X is a graded commutative ring which is finitely gen-
erated over k, then γ(X) = Krull.dimX. However this assumption is
not always satisfied for the Hochschild cohomology ring of quantum
complete intersections (see Sections 5 and 6).

We first decompose Hochschild cohomology as follows:

4.2. Construction. For G ⊆ {1, . . . , c} we denote by HH∗G the k-span
of the Ed

p with

G = {i ∈ {1, . . . , c} | di < ni − 1 or (Qd)i ∈ Ri}.
That is we take all those Ed

p from Theorem 3.4 such that the indices
in G are exactly the ones not in Imax, plus those in Imax which fulfill
the requirements for elements of I1 anyway.

Clearly this yields a decomposition HH∗(Λ) =
⊕

G⊆{1,...,c}HH∗G, and
hence

γ(HH∗(Λ)) = max
G⊆{1,...,c}

γ(HH∗G).

4.3. Proposition. For G ⊆ {1, . . . , c} the rate of growth of HH∗G is

γ(HH∗G) =

{
0 if HH∗G = 0
pos.rk KerQG×G else

.

(For the definition of pos.rk see (III) at the end of Section 2.) In
particular we always have γ(HH∗G) ≤ |G|.

For the proof we will need the following observation.

4.4. Observation. Let K ≤ Za be a submodule. The k-module with
basis K∩Na is Z-graded by |x| =

∑a
i=1 xi for x ∈ K. With this grading,

its rate of growth is γ(k(K ∩ Na)) = pos.rkK.

Proof of 4.3. We write G = {1, . . . , c} \ G. By construction HH∗G has
the k-basis

{Ed
p |p ≥ 0, d ≤ n− 1, p(−d) ≤ p ≤ p(−d) + 1,

∀i ∈ G : di = ni − 1 and (Qd)i 6∈ Ri,

∀i ∈ G with ni | di + 1: (Qd)i ∈ Ri,

∀i ∈ G with ni - di + 1: (Qd)i = 1},

and the extension degree of Ed
p is

∑c
i=1 pi.

Note that the map p is linear up to some rounding. Hence we
may calculate the rate of growth with respect to the grading given
by −

∑c
i=1 di.
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Since for any d there are at least one and at most 2c values of p
satisfying the conditions of the set above, we may disregard the number
of different choices for p for a given d.

Finally, since d is fixed outside G, we may restrict our attention to
the G part of the indices. That is, we need to understand the rate
of growth of the k-module with basis B{1,...,c}, where for G ⊆ G′ ⊆
{1, . . . , c} we set

BG′ = {dG ∈ ZG | dG ≤ nG − 1

∀i ∈ G′ ∩G : Q{i}×GdG ·Q{i}×G(nG − 1) 6∈ Ri

∀i ∈ G with ni | di + 1: Q{i}×GdG ·Q{i}×G(nG − 1) ∈ Ri

∀i ∈ G with ni - di + 1: Q{i}×GdG ·Q{i}×G(nG − 1) = 1}

Note that for G′ ⊆ G′′ we have BG′ ⊇ BG′′ . In particular B{1,...,c} ⊆
BG.

Now BG is invariant under adding elements of the set

−(
∏
i∈G

niN) ∩KerQG×G,

and contains only finitely many elements which are not obtained from
another element by such an addition. Hence, if BG is non-empty, the
rate of growth of the k-module with basis BG is identical to the rate of
growth of the k-module with basis NG ∩ KerQG×G, which, by Obser-
vation 4.4, is pos.rk KerQG×G.

It follows that γ(HH∗G) ≤ pos.rk KerQG×G.

Now we let Ĝ be maximal with G ⊆ Ĝ ⊆ {1, . . . , c} such that
pos.rk KerQ bG×G = pos.rk KerQG×G. It follows as in the discussion
above that if B bG 6= ∅ then the rate of growth of the k-module with
basis B bG is pos.rk KerQG×G.

Finally let i 6∈ Ĝ. Using similar arguments as above one sees that
the rate of growth of the free module with basis BG \ BG∪{i} is strictly
smaller than pos.rk KerQG×G.

Since

B{1,...,c} = B bG \ (
⋃
i 6∈ bG

(BG \ BG∪{i}))

it follows that, provided B{1,...,c} 6= ∅, the rate of growth of the k-module
with basis B{1,...,c} is pos.rk KerQG×G. �

Summing up the results for the HH∗G we have shown
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4.5. Theorem. The rate of growth of the Hochschild cohomology of a
finite dimensional quantum complete intersection is

max{pos.rk KerQG×G |G = {i ∈ {1, . . . , c} | di < ni − 1 or (Qd)i ∈ Ri}
for some d ∈ Zc with d ≤ n− 1,

∀i with ni | di + 1 and di < 0: (Qdi) ∈ Ri, and

∀i with ni - di + 1: (Qdi) = 1}.

4.6. Corollary. For a finite quantum complete intersection either all
qij are roots of unity, or the rate of growth of Hochschild cohomology
is at most c− 2.

Proof. Assume not all qij are roots of unity. Then we have rk KerQ ≤
c − 2, since Q is skew symmetric. Hence pos.rk KerQ ≤ c − 2. Now
we consider G with |G| = c− 1, that is G = {1, . . . , c} \ {h} for some
h. If rk KerQG×G ≤ c − 2 there is nothing to show, so assume QG×G

only contains roots of unity. Since Q does not only contain roots of
unity there is i ∈ G such that qih is not a root of unity. But then (Qd)i

cannot be a root of unity for any d ∈ Zc with dh = nh − 1 6= 0. Hence
this G is not to be considered in the maximum of Theorem 4.5. �

5. On the multiplicative structure of Hochschild
cohomology

In this section we will identify a subring S of the Hochschild coho-
mology ring, which is a finitely generated commutative k-algebra with-
out zero divisors, and is isomorphic to Hochschild cohomology modulo
nilpotent objects. We will completely describe S, determine its Krull
dimension, and determine when the entire Hochschild cohomology ring
is finitely generated as a module over S.

By Theorem 3.4 we know that Hochschild cohomology has a k-vector
space basis

{Ed
p |d such that ∀i : ni | di + 1 > 0⇒ (Qd)i ∈ Ri,

ni - di + 1⇒ (Qd)i = 1,

p ≥ 0, and p(−d) ≤ p ≤ p(−d) + 1}.

For simplicity of notation we set Ed
p = 0 whenever d and p do not

satisfy the conditions above. Then we always have

Ed
p · Ed′

p′ ∈ kEd+d′

p+p′ .

5.1. Lemma. Assume s(p) 6= −d. Then Ed
p is nilpotent.

Proof. Let i be such that s(p)i > −di. Then

s(nip)i ≥ nis(p)i ≥ ni(1− di) ≥ ni − nidi,

and hence (Ed
p)ni ∈ kEnid

nip
= 0. �



12 Hochschild (co)homology

We are particularly interested in the non-nilpotent elements of the
Hochschild cohomology ring. For simplicity of notation, we give the
remaining candidates a new name:

sp := E−s(p)
p

5.2. Lemma. Let p ∈ Nc such that there is i ∈ {1, . . . , c} with ni > 2
and pi is odd. Then sp is nilpotent.

Proof. Straightforward calculation shows that (sp)2 satisfies the as-
sumption of Lemma 5.1. �

Now we set

S = k〈sp |∀i with pi even: (Qs(p))i = 1

∀i with pi odd: ni = 2 and (Qs(p))i = −1〉

By the above two lemmas the composition S ⊂ - HH∗(Λ) -- HH∗(Λ)
(nilpotence)

is onto.
Our next aim is to understand how the elements of S are multiplied

with each other and with the other Ed
p . To do so we lift the map

representing sp, with p as in the definition of S, to a map of c-tuple
complexes.

5.3. Lemma. The element sp with p as in the definition of S is repre-
sented by the map of c-tuple complexes P1 ⊗ · · · ⊗ Pc

- (P1 ⊗ · · · ⊗
Pc)[p], which sends 1⊗ 1 to 1

q〈s(r)|s(p)〉 · 1⊗ 1 in position p + r.

Proof. It suffices to verify that the map given in the lemma is a map of
c-tuple complexes, since then it clearly does the right thing in position
p. This amount to checking that various squares commute. Doing so is
a (somewhat tiresome) straightforward calculation, with four different
cases according to the parity of the pi and ri. �

Note that when passing from c-tuple complexes to their total com-
plexes some maps need to be multiplied by −1. One choice of doing
so is to multiply the map in direction i from position p + ei to p by∏

j<i(−1)pi . With this convention the following is an immediate con-
sequence of Lemma 5.3.

5.4. Corollary. We have

spE
d
p′ =

∏
j<i(−1)pjp′i

q〈s(p′)|s(p)〉 E
d−s(p)
p+p′

and in particular

spsp′ =

∏
j<i(−1)pjp′i

q〈s(p′)|s(p)〉 sp+p′ .

From these results we obtain the following theorem.
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5.5. Theorem. The Hochschild cohomology ring of a quantum complete
intersection has a subring S which is isomorphic to

k

〈
y

p1n1
2

1 · · · y
pcnc

2
c ∈ k[y1, . . . yc] |∀i with pi even : (Qs(p))i = 1, and

∀i with pi odd : ni = 2 and (Qs(p))i = −1
〉
.

In particular S is a finitely generated k-algebra without zero-divisors.

Moreover the composition S ⊂ - HH∗(Λ) -- HH∗(Λ)
(nilpotence)

is an iso-

morphism. Hence HH∗(Λ)
(nilpotence)

is a split quotient of HH∗(Λ), which is

isomorphic to S.

Proof. The fact that the sp commute can be check directly, using the
formula of Corollary 5.4. Alternatively note that, since by that formula
s2
p 6= 0, we have that sp lies in the even part of Hochschild cohomology,

or char k = 2. In both cases it follows from general theory that sp lies
in the center of the Hochschild cohomology ring.

Thus S has the form described in the theorem.
To see that S is finitely generated as a k-algebra we partially order

the set {y
p1n1

2
1 · · · y

pcnc
2

c ∈ S} by comparing the exponents component
wise. Since the ideal in k[y1, . . . , yc] generated by this set is finitely
generated it follows that there are only finitely many minimal elements
with respect to this partial order. We claim that these generate S as

k-algebra. Assume that y
p1n1

2
1 · · · y

pcnc
2

c ∈ S is not minimal. Then one

easily sees that y
p1n1

2
1 · · · y

pcnc
2

c is the product of two smaller elements of
this form (for instance one of them could be chosen minimal). Iterating

this we see that any y
p1n1

2
1 · · · y

pcnc
2

c ∈ S is a product of minimal ones.
The final part of the theorem follows from the comment below the

definition of S, and Corollary 5.4. �

We conclude this section by giving a precise criterion of when the
entire Hochschild cohomology ring is finitely generated over S.

5.6. Lemma. The decomposition HH∗(Λ) =
⊕

G⊆{1,...,c}HH∗G from Con-
struction 4.2 respects the S-module structure.

Proof. This follows immediately from the definition of the HH∗G, and
from the multiplication formula in Corollary 5.4. �

5.7. Proposition. The module HH∗G is finitely generated over S if and
only if one of the following holds.

(1) HH∗G = 0, or
(2) pos.rk KerQG×G = pos.rk KerQ{1,...,c}×G.

Proof. Clearly we may assume HH∗G 6= 0. Note that the sp with pi 6= 0
for some i ∈ {1, . . . , c} \ G annihilate HH∗G, and hence that HH∗G 6= 0
is actually a module over the split quotient

SG := k〈sp ∈ S | ∀i : i ∈ G ∨ pi = 0〉.
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Now note that γ(SG) = pos.rk KerQ{1,...,c}×G by Observation 4.4.
Moreover SG acts on HH∗G without zero-divisors: Since both the SG

and HH∗G are Zc-graded it suffices to look at graded parts. For those
this is immediate from the multiplication formula in Corollary 5.4.

Now the claim follows. �

5.8. Corollary. For any finite dimensional quantum complete intersec-
tion HH∗{1,...,c} is a finitely generated S-module.

5.9. Theorem. The Hochschild cohomology ring is finitely generated
as a module over S if and only if

∀G ⊆ {1, . . . , c} such that there is d ∈ Zc with d ≤ n− 1,

∀i ∈ {1, . . . , c} \G : di = ni − 1,

∀i ∈ G with ni | di + 1: (Qdi) ∈ Ri, and

∀i ∈ G with ni - di + 1: (Qdi) = 1

the equality pos.rk KerQG×G = pos.rk KerQ{1,...,c}×G holds.

6. Examples

The following result has been obtained in [2].

6.1. Example. Let Λ = Λn1,n2
q12

be a codimension 2 quantum complete
intersection, such that q12 is not a root of unity. Let d = (d1, d2) ≤
(n1 − 1, n2 − 1). Then HH∗,d(Λ) does not vanish if and only if for any

i ∈ {1, 2} we have di = ni−1 or ni - di+1 and q
d3−i

12 = 1. Since q12 is not
a root of unity this means that whenever one of the di is not ni−1, then
d3−i has to be 0. Therefore the only d which contribute to Hochschild
cohomology are (n1− 1, n2− 1) and (0, 0). For d = (n1− 1, n2− 1) we
obtain

Imax = {1, 2} I1 = ∅ I2 = ∅ p(−d) = (−1,−1)

and hence

HH∗,d(Λ) =
k

〈
E

(n1−1,n2−1)
(0,0)

〉
.

For d = (0, 0) we obtain

Imax = ∅ I1 = ∅ I2 = {1, 2} p(−d) = (0, 0)

and hence

HH∗,d(Λ) =
k

〈
E

(0,0)
(0,0) , E

(0,0)
(0,1) , E

(0,0)
(1,0) , E

(0,0)
(1,1)

〉
.

Summing up we obtain

HH∗,d(Λ) =
k

〈
E

(n1−1,n2−1)
(0,0) , E

(0,0)
(0,0) , E

(0,0)
(0,1) , E

(0,0)
(1,0) , E

(0,0)
(1,1)

〉
,

and hence
dim HH∗(Λ) = (2, 2, 1, 0, . . .).

We generalize this example to arbitrary codimension:
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6.2. Example. Let c ≥ 2 and the qij generic (that means, (Qd)i is a
root of unity only if dj = 0 for all j 6= i). Then HH∗,d(Λ) 6= 0 only for
d = n− 1 or d = 0. Similar to Example 6.1 we obtain

HH∗,n−1(Λ) =
k

〈
En−1

0

〉
,

and

HH∗,0(Λ) =
k

〈
E0

p | 0 ≤ p ≤ 1
〉
.

In particular

dim HH∗(Λ) = (1 + (c
0) , (

c
1) , (

c
2) , (

c
c) , . . .).

Since the total dimension is finite, the rate of growth γ(HH∗(Λ)) = 0,
and S = k.

Now let us look at the other extreme case. This case has already
been studied in [3].

6.3. Example. Let c ≥ 2 and let all qij be roots of unity. Then

pos.rk KerQG′×G = rk KerQG′×G = |G|
for any G,G′ ⊆ {1, . . . , c}. Hence HH∗(Λ) is finitely generated over S,
and

Krull.dimS = γ(HH∗(Λ)) = c.

The final two examples illustrate that in the case γ(HH∗(Λ)) = c−2
very different kinds of behaviour can occur.

6.4. Example. Let q ∈ k× not a root of unity, and c ∈ N≥3. Let Λ be
a codimension c quantum complete intersection with

qij = 1 for i, j < c− 1, qi,c−1 = q for i < c− 1,

qic = q−1 for i < c− 1, qc−1,c = q−1.

One easily sees that S = k. A case by case study (according to for
which i we have di = ni−1) shows that the subspace HH∗{1,...,c−2} has a
finite dimensional complement in HH∗(Λ). It is non-empty if and only
if nc−1 = nc, and in that case

γ(HH∗(Λ)) = γ(HH∗{1,...,c−2})

= pos.rk KerQ{1,...,c−2}×{1,...,c−2}︸ ︷︷ ︸
=0

= c− 2.

6.5. Example. Let q ∈ k× not a root of unity, and c ∈ N≥3 and (for
simplicity) char k 6= 2. Let Λ be a codimension c quantum complete
intersection with

qij = 1 for i, j < c− 1, qi,c−1 = q for i < c− 1,

qic = q−1 for i < c− 1, qc−1,c = q.
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Then we have

S =
k

〈
sp | ∀i : pi even, and (Q

(pjnj

2

)
j
)i = 1

〉
=

k

〈
sp | ∀i : pi even, and

c−2∑
j=0

pjnj = pc−1nc−1 = pcnc

〉
.

In particular
Krull.dimS = c− 2,

and hence (by Corollary 4.6) also γ(HH∗(Λ)) = c− 2.
Similar to Example 6.4 one sees that HH∗{1,...,c−2}+ HH∗{1,...,c} form

a subspace of HH∗(Λ) which has a finite dimensional complement.
Since by Corollary 5.8 HH∗{1,...,c} is always finitely generated over S,
we only have to look at HH∗{1,...,c−2}. As in Example 6.4, one sees that
HH∗{1,...,c−2} 6= 0 if and only if nc−1 = nc. Since

pos.rk KerQ{1,...,c−2}×{1,...,c−2} = c−2 6= 0 = pos.rk KerQ{1,...,c}×{1,...,c−2}

it follows that HH∗(Λ) is finitely generated over S if and only if nc−1 6=
nc.

7. Hochschild homology

To calculate Hochschild homology, we proceed as for Hochschild co-
homology. That is we calculate for any d ∈ Zc the degree d part of the
Hochschild homology. The actual calculations are very similar to the
corresponding ones in Section 3, and will therefore be omitted here.

7.1. Observation. The degree d-part (Λen〈s〉⊗ΛenΛ)d is non-zero if and
only if s ≤ d ≤ s + n−1. Moreover in that case it is one dimensional.

As in the case of cohomology, it follows that the c-tuple complex
(P1 ⊗ · · · ⊗ Pc ⊗Λen Λ)d is concentrated in a cube (with sides of length
0 or 1), where there is a one-dimensional space in each corner of the
cube.

Next we need to understand what happens to a map f : Λen〈s〉 - Λen〈s′〉
when it is tensored over Λen with Λ.

7.2. Lemma. Let f : Λen〈s〉 - Λen〈s′〉. Then

f ⊗Λen Λ: Λ〈s〉 - Λ〈s′〉

xa -
∑

i

f i
2x

af i
1,

where f(1⊗ 1) =
∑

i f
i
1 ⊗ f i

2.

Now we are ready to calculate what tensoring over Λen with Λ does
to the maps occurring in the c-tuple complex P1 ⊗ · · · ⊗ Pc.

7.3. Lemma. Let s and d such that s ≤ d ≤ s + n − 1, and let
i ∈ {1, . . . , c}.
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(1) Assume further that di > si. The map (Λ〈s + ei〉)d - (Λ〈s〉)d
induced obtained by tensoring the map

Λen〈s + ei〉 - Λen〈s〉

1⊗ 1 -
1

q〈ei|s〉
xi ⊗ 1− 1

q〈s|ei〉
1⊗ xi

over Λen with Λ and taking the degree d part vanishes if and
only if (Qd)i = 1.

(2) Assume further that di = si+ni−1. The map (Λ〈s + (ni − 1)ei〉)d - (Λ〈s〉)d
induced obtained by tensoring the map

Λen〈s + ei〉 - Λen〈s〉

1⊗ 1 -
ni−1∑
j=0

(
1

q〈ei|s〉

)j (
1

q〈s|ei〉

)ni−1−j

xj
i ⊗ x

ni−1−j
i

over Λen with Λ and taking the degree d part vanishes if and
only if (Qd)i ∈ Ri.

As for cohomology, it follows that if the map on one edge of the cube
(P1 ⊗ · · · ⊗ Pc ⊗Λen Λ)d vanishes then all parallel maps also vanish.

7.4. Theorem. Let Λ = Λn
q be a quantum complete intersection, and

let d ∈ Nc. We divide the set {1 . . . c} into the following three parts:

I0 = {i ∈ {1 . . . c} : di = 0}
I1 = {i ∈ {1 . . . c} : ni | di} \ I0

I2 = {i ∈ {1 . . . c} : ni - di}
Then HH∗,d(Λ) 6= 0 if and only if the following hold:

• for any i ∈ I1 the product (Qd)i ∈ Ri, and
• for any i ∈ I2 we have (Qd)i = 1.

In this situation HH∗,d(Λ) has a k-vector space basis

{Tp
d | p ≥ 0 and p(d + 1)− 2 ≤ p ≤ p(d + 1)− 1}.

Here Tp
d is represented by xd−s(p) in position p. In particular Tp

d has
torsion degree

∑c
i=1 pi.

8. The rate of growth of Hochschild Homology

To study the rate of growth of Hochschild homology, we decompose
it similar to our decomposition of Hochschild cohomology in 4.2.

8.1. Construction. For G ⊆ {1, . . . , c} we denote by HHG
∗ the k-span

of the Tp
d with

G = {i ∈ {1, . . . , c} | di > 0 or (Qd)i ∈ Ri}.
This yields a decomposition HH∗(Λ) =

⊕
G⊆{1,...,c}HHG

∗ , and hence

γ(HH∗(Λ)) = max
G⊆{1,...,c}

γ(HHG
∗ ).
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As in the proof of Theorem 4.5 one obtains the following result.

8.2. Theorem. The rate of growth of the Hochschild homology of a
finite dimensional quantum complete intersection is

max{pos.rk KerQG×G |G = {i ∈ {1, . . . , c} | di > 0 or (Qd)i ∈ Ri}
for some d ∈ Nc with

∀i with ni | di and di > 0: (Qdi) ∈ Ri, and

∀i with ni - di : (Qdi) = 1}.

We conclude this paper by showing that the Hochschild homology of
Λ is closely related to the Hochschild homologies of certain subalgebras.

Let ΛI denote the subalgebra of Λ generated by the xi with i ∈ I
for some I ⊂ {1, . . . , c}. Note that ΛI is a split quotient of Λ (that
is we have algebra homomorphisms ΛI → Λ → ΛI whose composition
is the identity on ΛI). Therefore it follows from the functoriality of
Hochschild homology that HH∗(ΛI) can be embedded into HH∗(Λ).

The following theorem shows that the Hochschild homologies of these
subalgebras determine the Hochschild homology of Λ to a large extent.

8.3. Theorem. Let M be the maximum of the rates of growth of HH∗(Λ{i}),

where i ∈ {1, . . . , c} and {i} = {1, . . . , c}\{i}. Then the rate of growth
of HH∗(Λ) is

M if HH{1,...,c}
∗ = 0

max{M, pos.rk KerQ} if HH{1,...,c}
∗ 6= 0.

Proof. We will need to look at the sets HHG
∗ as well as their analogs

for HH∗(Λ{i}). To avoid confusion we write HHG
∗ (Λ) and HHG

∗ (Λ{i}),
respectively, for these vector spaces.

Let i0 ∈ {1, . . . , c} and G ⊆ {i0}. Then if follows from the ex-
plicit description of bases in Theorem 7.4 (and Construction 8.1) that
HHG

∗ (Λ) can be identified with a subspace of HHG
∗ (Λ{i0}), and moreover

that the set

{Tp
d |G = {i ∈ {i0} | di > 0 or (Qd)i ∈ Ri}
G 6= {i ∈ {1, . . . , c} | di > 0 or (Qd)i ∈ Ri}}

is a basis of the quotient space. This clearly means that

{i ∈ {1, . . . , c} | di > 0 or (Qd)i ∈ Ri} = G ∪ {i0},

so the quotient embeds naturally into HHG∪{i0}
∗ .

It follows that

γ(HHG
∗ (Λ)) ≤ γ(HHG

∗ (Λ{i0})) ≤ max{γ(HHG
∗ (Λ)), γ(HHG∪{i0}

∗ (Λ))}.

Taking the maximum over all G and i0 the claim follows. �
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