[ 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | All | Home ]

Preprint 2009-035

A convergent nonconforming finite element method for compressible Stokes flow

Kenneth H. Karlsen and Trygve K. Karper

Abstract: We propose a nonconforming finite element method for isentropic viscous gas flow in situations where convective effects may be neglected. We approximate the continuity equation by a piecewise constant discontinuous Galerkin method. The velocity (momentum) equation is approximated by a finite element method on div-curl form using the nonconforming Crouzeix–Raviart space. Our main result is that the finite element method converges to a weak solution. The main challenge is to demonstrate the strong convergence of the density approximations, which is mandatory in view of the nonlinear pressure function. The analysis makes use of a higher integrability estimate on the density approximations, an equation for the “effective viscous flux”, and renormalized versions of the discontinuous Galerkin method.

Paper:
Available as PDF (362 Kbytes).
Author(s):
Kenneth H. Karlsen
Trygve K. Karper
Publishing information:
Comments:
Submitted by:
; 2009-06-25.