Preprint 2001-043

Application of Moving Adaptive Grids for Numerical Solution of 2-D Nonstationary Problems in Gas Dynamics

Boris N. Azarenok and Sergey A. Ivanenko

Abstract: Solution-adaptive grid generation procedure is coupled with the Godunov-type solver of the second order accuracy. Dynamically adaptive grids, clustered to singularities, allow to increase the accuracy of numerical solution. The theory of harmonic maps is used as a theoretical framework for grid generation. The problem of constructing harmonic coordinates on the surface of the graph of control function is formulated. The projection of these coordinates onto a physical domain produces an adaptive-harmonic structured grid. A variational grid generator which can be used also in the case of unstructured meshes with adaptation to a vector-function is described in detail. The discrete functional has an infinite barrier on the boundary of the set of grids with all convex cells and this guarantees unfolded (nondegenerate) grid generation at every time step. Results of test computations are presented. <

Available as PostScript (10.7 Mbytes) or gzipped PostScript (1.1 Mbytes; uncompress using gunzip).
Boris N. Azarenok, <>
Sergey A. Ivanenko, <>
Publishing information:
Submitted by:
<> October 16 2001.

[ 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | All Preprints | Preprint Server Homepage ]
© The copyright for the following documents lies with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use.

Conservation Laws Preprint Server <>
Last modified: Thu Oct 18 12:08:47 MET DST 2001