Abstract:We prove new velocity averaging results for second-order multidimensional equations of the general form, ${\mathcal L}(\nabla_x,v)f(x,v)=g(x,v)$ where ${\mathcal L}(\nabla_x,v):={\mathbf a}(v)\cdot\nabla_x-\nabla_x^\top\cdot{\mathbf b}(v)\nabla_x$. These results quantify the Sobolev regularity of the averages, $\int_vf(x,v)\phi(v)dv$, in terms of the non-degeneracy of the set $\{v\!: |{\mathcal L}(i\xi,v)|\leq \delta\}$ and the mere integrability of the data, $(f,g)\in (L^p_{x,v},L^q_{x,v})$. Velocity averaging is then used to study the \emph{regularizing effect} in quasilinear second-order equations, ${\mathcal L}(\nabla_x,\rho)\rho=S(\rho)$ using their underlying kinetic formulations, ${\mathcal L}(\nabla_x,v)\chi_\rho=g_{{}_S}$. In particular, we improve previous regularity statements for nonlinear conservation laws, and we derive completely new regularity results for convection-diffusion and elliptic equations driven by degenerate, non-isotropic diffusion.

**Paper:**- Available as PDF (400 Kbytes).
**Author(s):**- Eitan Tadmor, email: tadmor at cscamm dot umd dot edu
- Terence Tao, email: tao at math dot ucla dot edu
**Publishing information:****Comments:****Submitted by:**- tadmor at cscamm dot umd dot edu November 3 2005.

[ 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | All Preprints | Preprint Server Homepage ]

Conservation Laws Preprint Server <conservation@math.ntnu.no> Last modified: Mon Nov 7 13:25:59 MET 2005