Preprint 2005-045

Compensated Compactness for 2D Conservation Laws

Eitan Tadmor, Michel Rascle, and Patrizia Bagnerini

Abstract: We introduce a new framework for studying two-dimensional conservation laws by compensated compactness arguments. Our main result deals with 2D conservation laws which are {\em nonlinear} in the sense that their velocity fields are a.e. not co-linear. We prove that if $u^\epsilon$ is a family of uniformly bounded approximate solutions of such equations with $H^{-1}$-compact entropy production and with (a minimal amount of) uniform time regularity, then (a subsequence of) $\ueps$ convergences strongly to a weak solution. We note that no translation invariance in space --- and in particular, no spatial regularity of $u(\cdot, t)$ is required. Our new approach avoids the use of a large family of entropies; by a judicious choice of entropies, we show that only {\em two} entropy production bounds will suffice. We demonstrate these convergence results in the context of vanishing viscosity, kinetic BGK and finite volume approximations. Finally, the intimate connection between our 2D compensated compactness arguments and the notion of multi-dimensional nonlinearity based on kinetic formulation is clarified.

Available as PDF (304 Kbytes).
Eitan Tadmor, email: tadmor at cscamm dot umd dot edu
Michel Rascle, email: rascle at math dot unice dot fr
Patrizia Bagnerini, email: pbagneri at dimat dot unipv dot it
Publishing information:
J. Hyperbolic DEs 2(3) (2005) 697-712
Submitted by:
tadmor at cscamm dot umd dot edu November 3 2005.

[ 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | All Preprints | Preprint Server Homepage ]
© The copyright for the following documents lies with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use.

Conservation Laws Preprint Server <>
Last modified: Mon Nov 7 13:25:59 MET 2005