Preprint 2003-041

Stability of Solutions of Quasilinear Parabolic Equations

Giuseppe Maria Coclite and Helge Holden

Abstract: We bound the difference between solutions $u$ and $v$ of $u_t = a\Delta u+\Div_x f+h$ and $v_t = b\Delta v+\Div_x g+k$ with initial data $\phi$ and $ \psi$, respectively, by $\Vert u(t,\cdot)-v(t,\cdot)\Vert_{L^p(E)}\le A_E(t)\Vert \phi-\psi\Vert_{L^\infty(\R^n)}^{2\rho_p}+ B(t)(\Vert a-b\Vert_{\infty}+ \Vert \nabla_x\cdot f-\nabla_x\cdot g\Vert_{\infty}+ \Vert f_u-g_u\Vert_{\infty} + \Vert h-k\Vert_{\infty})^{\rho_p} \abs{E}^{\eta_p}$. Here all functions $a$, $f$, and $h$ are smooth and bounded, and may depend on $u$, $x\in\R^n$, and $t$. The functions $a$ and $h$ may in addition depend on $\nabla u$. Identical assumptions hold for the functions that determine the solutions $v$. Furthermore, $E\subset\R^n$ is assumed to be a bounded set, and $\rho_p$ and $\eta_p$ are fractions that depend on $n$ and $p$. The diffusion coefficients $a$ and $b$ are assumed to be strictly positive and the initial data are smooth.

Available as PostScript (456 Kbytes) or gzipped PostScript (216 Kbytes; uncompress using gunzip).
Giuseppe Maria Coclite <>
Helge Holden, <>
Publishing information:
Submitted by:
<> June 11 2003.

[ 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | All Preprints | Preprint Server Homepage ]
© The copyright for the following documents lies with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use.

Conservation Laws Preprint Server <>
Last modified: Wed Jun 11 18:54:45 MEST 2003