Preprint 2003-060

On the Connection between some Riemann-Solver Free Approaches to the Approximation of Multi-Dimensional Systems of Hyperbolic Conservation Laws

Tim Kröger, Sebastian Noelle, and Susanne Zimmermann

Abstract: In this paper, we present some interesting connections between a number of Riemann-solver free approaches to the numerical solution of multi-dimensional systems of conservation laws. As a main part, we present a new and elementary derivation of Fey's Method of Transport (MoT) (respectively the second author's ICE version of the scheme) and the state decompositions which form the basis of it. The only tools that we use are quadrature rules applied to the moment integral used in the gas kinetic derivation of the Euler equations from the Boltzmann equation, to the integration in time along characteristics and to space integrals occuring in the finite volume formulation. Thus, we establish a connection between the MoT approach and the kinetic approach. Further more, Ostkamp's equivalence result between her Evolution Galerkin scheme and the Method of Transport is lifted up from the level of discretizations to the level of exact evolution operators, introducing a new connection between the MoT and the Evolution Galerkin approach. At the same time, we clarify some important differences between these two approaches.

Available as Postscript (408 Kbytes) or gzipped PostScript (144 Kbytes; uncompress using gunzip).
Tim Kröger, <>
Sebastian Noelle, <>
Susanne Zimmermann
Publishing information:
Submitted by:
<> September 17 2003.

[ 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | All Preprints | Preprint Server Homepage ]
© The copyright for the following documents lies with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use.

Conservation Laws Preprint Server <>
Last modified: Thu Sep 18 08:11:09 MEST 2003