[ 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | All | Home ]

Preprint 2009-003

The Slow Erosion Limit in a Model of Granular Flow

Debora Amadori and Wen Shen

Abstract: We study a 2x2 system of balance laws that describes the evolution of a granular material (avalanche) flowing downhill. The original model was proposed by Hadeler and Kuttler. The Cauchy problem for this system is studied by the authors in the recent papers [2008-023, MR2375239].

In this paper, we first consider an initial-boundary value problem. The boundary condition is given by the flow of the incoming material. For this problem we prove the global existence of BV solutions for a suitable class of data, with bounded by possibly large total variations.

We then study the “slow erosion (or deposition) limit”. We show that, if the thickness of the moving layer remains small, then the profile of the standing layer depends only on the total mass of the avalanche flowing downhill, not on the time-law describing at which rate the material slides down. More precisely, in the limit as the thickness of the moving layer tends to zero, the slope of the mountain is provided by an entropy solution to a scalar integro-differential conservation law.

Available as PDF (258 Kbytes).
Debora Amadori,
Wen Shen,
Publishing information:
Submitted by:
; 2009-01-09.